Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подготовка насосной станции DAB к работе

Подготовка насосной станции DAB к работе.

Перед установкой насосной станции DAB: обязательно проверьте давление воздуха в воздушной полости гидробака и при необходимости отрегулируйте его (подробно об этом в статье «Настройка реле давления и регулировка давления воздуха в гидробаке»). Также проверьте свободу вращения вала насоса. В большинстве случаев достаточно провернуть отверткой лопасти вентилятора под задней крышкой насоса. Вращение должно быть свободным и равномерным.

Если есть возможность, всегда устанавливайте на всасывающей и напорной линии по отдельной задвижке (это облегчит монтаж/демонтаж установки, легче станет заполнять станцию перед запуском и легче станет сливать воду на осенне-зимний период). Проверьте затяжку болтов крепления насоса к гидробаку, во избежание дополнительных вибраций установки, и надежно прикрепите всю установку к полу болтами через лапки гидробака. Электродвигатель насоса необходимо всегда содержать чистым, это важно для надежного охлаждения. Всасывающий и напорный трубопровод лучше соединять с насосом посредством быстроразъемных соединений («американки»), что значительно сэкономит время монтажа/демонтажа установки.

Насосные станции DAB AQUAJET и AQUAJETINOX на базе реле давления

Непосредственно первый запуск станции (на примере насосной станции AQUAJET или AQUAJETINOX) выглядит так: откройте задвижку на всасывающем трубопроводе и заполните его водой. Это можно сделать, заливая воду непосредственно в трубопровод (если возможно), либо через заливную пробку насоса. Заливаем до тех пор, пока водой не заполнится вся всасывающая магистраль (до обратного клапана). Подсоединяем станцию к всасывающему трубопроводу (если это не было сделано раньше) и заполняем водой через заливную пробку всю насосную часть, пока вода не начнет выливаться. Заполняем тщательно и не спеша, пытаясь избежать образования воздушных пробок. Подсоединяем напорный трубопровод, полностью открываем задвижку на нем и открываем любой кран потребителя (душ, мойка и т.п.). Подаем питание на насос. Даем насосу поработать некоторое время (не закрываем кран потребителя), тем самым удаляя весь воздух из системы. Ждем до тех пор, пока подача насоса не стабилизируется. Задвижкой на напорном трубопроводе потом можно будет её отрегулировать (например уменьшить, в случае если нет необходимости в таком количестве воды). Затем закрываем кран потребителя. Насос продолжая работать, будет закачивать воду в гидробак, плавно повышая давление. При достижении „верхнего“ давления выключения (подробно об этом в статье «Настройка реле давления и регулировка давления воздуха в гидробаке») насос должен отключиться. Запоминаем показания манометра на насосной станции и следим за тем, чтобы оно не изменялось с течением времени при отсутствии водоразбора. Если оно падает по прошествии времени, это значит, что система не герметична и где-то есть утечка, которую необходимо обязательно устранить. При открытии любого крана потребителя давление в системе начнет падать и достигнув „нижнего“ давления включения насос запустится опять, цикл повторился. Всё, насосная станция работает правильно и готова к дальнейшей работе.

Никогда не экономьте на обратном клапане (будь то донный или магистральный). Если со временем он начнет пропускать воду это сразу приведет к большим проблемам. Станция начнет включаться просто так, поскольку давление будет падать ввиду утечек через обратный клапан. В конце концов, вся вода может просто уйти из всасывающего трубопровода, и насос придется запускать заново. А добраться до обратного клапана после установки всех труб иногда бывает совсем непросто.

Гидроаккумулятор или контроллер давления? Что лучше? Ответ эксперта

Гидроаккумулятор или контроллер давления? Что лучше? Ответ эксперта

Дата создания : 2019-04-01 Просмотров : 40405

После проведения буровых работ и обустройства скважины, следующим на очереди возникает вопрос автоматизации процесса подачи воды. Согласитесь, не слишком удобно каждый раз при надобности набрать воды включать и выключать насос с розетки. В конечном итоге затеи со скважиной мы хотим получить автоматизированную систему водоснабжения, т.е. при открытии вентиля должна бежать вода, при закрытии – отключатся насос. С этой трудной задачей справится автоматика.

Читайте так же:
Устройство и регулировка карбюратора к 127

Автоматику подразделяют на два основных типа: механическая и электронная.

  1. Механическая автоматика представляет собой реле давления – обеспечивает включение и выключения насоса при изменении давления воды. Так же может комплектоваться дополнительно реле защиты от сухого хода, манометром. Устройство имеет верхний и нижний порог срабатывания, который регулируется путем натяжения пружины. При достижении нижнего порога контакты замыкаются и насос включается. При верхнем пороге контакты размыкаются и обесточивают аппарат. Основной задачей реле защиты от сухого хода является отключение оборудования, когда в скважине закончилась вода, так как это приведет к поломке оборудования. Преимущества механической автоматики: низкая стоимость, простота в эксплуатации и настройке. Основные недостатки: установка только с гидроаккумулятором, менее функционален в сравнении с контроллером.
  2. Электронный контролер давления (прессконтроль) – более совершенный прибор для автоматизации подачи воды, чем реле давления, имеет ряд отличительных преимуществ:
  • Датчик давления и реле протока – позволяет контроллеру включать и отключать насос по протоку, т.е. запуск насоса происходит по давлению включения, а отключение — после перекрытия вентиля и прекращения протока по трубопроводу. Давления включения может быть ограничено заводскими настройками. Второй режим работы контроллера давления – по установленным настройкам (верхний и нижний порог). Количество режимов зависит от модели контроллера давления. Но стоит учесть, что второй режим работает только в паре с гидроаккумулятором. Пример контроллера с двумя режимами работы Aquatica 779546, Italtecnica Brio Top.
  • Все электронные контроллеры оснащены защитой от сухого хода – предотвращения работы насоса в холостую и выход его из строя из-за перегрева.
  • Индикаторы работы контроллера на блоке управления.
  • Автоматический перезапуск через определенные промежутки времени после остановки насоса реле защиты от сухого хода.
  • Встроенный обратный клапан. Стоит учесть, что водоразбор между насосом и контроллером давления невозможен. Автоматика не увидит понижения давления и не запустит насос.
  • Гаситель гидроударов – небольшой гидроаккумулятор в корпусе контроллера. Пример такой автоматики Pedrollo Easy Press II. Если вы не планируете устанавливать гидроаккумулятор, то стоит обратить внимание на контроллер с гасителем гидроударов.
  • Встроенный монитор облегчит настройку контроллера и работу с ним.
  • Функция плавного пуска насоса существенно увеличит срок его службы, уменьшит гидроудар.
  • Антицикличность предотвратит постоянный запуск и остановку насоса при протечке жидкости в системе и тем самым убережет от поломки дорогое оборудование.

В зависимости от модели и конструкции контроллера давления он может иметь все эти функции или только некоторые, устанавливаться в паре с гидроаккуулятором или без него. Каждый контроллер рассчитан на максимальную мощность. Мощность насоса должна быть меньше этого показателя. При выборе прессконтроля стоит обратить внимание, что некоторые контроллеры давления устанавливаются только в вертикальном, или только в горизонтально положении, например Aquatica 779534 устанавливается только вертикально

К электронной автоматике так же относят контроллер давления с функцией частотного преобразования. Это лучшая автоматика на сегодняшний день.

Кроме всех вышеперечисленных достоинств, частотный преобразователь регулирует скорость вращения вала двигателя в зависимости от объема потребления воды. Таким образом достигается одинаковое давления во всех точках водоразбора. Простыми словами если открыт один вентиль – крыльчатка насоса крутится с одной скоростью, если открыть еще один вентиль – частота вращения увеличится, а давление в точках водоразбора будет одинаковым. Еще важное преимущество — это значительная экономия электроэнергии и ресурса насоса.

Гидроаккумулятор

Гидроаккумулятор представляет собой металлический бак с резиновой мембраной(грушей) внутри. Между стенкой бака и мембраной создается давление путем закачивания воздуха. Заводская предзакачка 1,5bar, но это давление можно изменять в зависимости от потребностей. Для регулировки предусмотрен ниппель. Принцип действия: под давлением насоса в гидроаккумулятор подается вода, наполняя мембрану до определенного объема. После отключения системы, на воду начинает давить воздух, закачанный в гидробак, тем самым выталкивая ее в водопровод до тех пор, пока значение давление гидроаккумулятора не сравняется с давлением системы. Стоит учитывать, что вместимость гидробака 40-60% воды от заявленного объема.

Читайте так же:
Регулировка зажигания на двигателе 2v78f

Гидроаккумулятор выполняет три основных функции:

  • Защита от гидроудара. Гидроаккумулятор гасит резкое повышение давления от включения системы при открытии вентиля.
  • Гидроаккумулятор уменьшает количество пусков насоса за счет определенного запаса воды в мембране. Простыми словами если вам нужно набрать воды в чашку, насос не будет запускаться, а запас воды компенсируется за счет гидроаккумулятора. При отсутствии напорного бака произойдет полноценный запуск системы. Таким образом мембранный гидроаккумулятор существенно продлевает срок службы оборудования и водопроводной системы.
  • Поддержание стабильного давления в системе.
  • Создает запас воды на случай отключения электроэнергии или выход из строя агрегата.

Imera AO 100

В зависимости от материала изготовления гидроаккумуляторы бывают из нержавеющей стали и окрашенной стали. Нержавеющий аккумулятор имеет ряд преимуществ перед стальным, но стоит дороже. Мембрана из пищевой EPDM — резины. По объему баки могут быть 24л, 50л, 80л, 100л, 150л, 200л, 300л, 500л, 750л…2000л. Максимальное давление 10bar. Выбор модели оптимального гидроаккумулятора зависит от напорных характеристик, производительности насоса, количества потребления воды и для каких целей используется. Например, для одноэтажного здания, в котором проживает семья из 4 человек и 3-4 точки водоразбора оптимальным выбором будет бак объемом 80-100л. Для удобства монтажа гидроаккумулятор бывает вертикальный или горизонтальный. Отлично зарекомендовали себя на рынке итальянские производители баков Gidroferra, Aquasystem, Imera.

Широкий модельный ряд автоматики и гидроаккумуляторов позволяет подобрать оптимальное оборудование для автоматизированного водоснабжения, максимально учитывая пожелания клиента и его возможности. При выборе оборудования обязательно проконсультируйтесь со специалистом.

Настройка реле давления Brio 2000 M

Настройка реле давления Brio 2000 M

У многих пользователей, кто купил реле давления Brio 2000 M, возникают трудности с регулировкой. Некоторые не понимают, как отрегулировать нижний и верхний порог срабатывания реле, и где находится регулировочный винт.

В данной статье строительного журнала samastroyka.ru будет рассказано о том, как настроить реле давления Brio 2000 M. Инструкция также подойдёт и для регулировки других, подобных этому автоматических реле.

Как настроить реле давления Brio 2000 M

В этом итальянском реле давления вы не найдёте снаружи каких-либо регулировочных кнопок, винтов и т. д. Все, что имеется снаружи реле, так это кнопка перезапуска и индикаторы, напряжения сети и остановки насоса по сухому ходу.

Как настроить реле давления Brio 2000 M

Все регулировочные винты, а он всего лишь один, находятся внутри реле. Если снять крышку, то можно увидеть внутри клемму подключения реле к насосу и регулировочный винт со стрелками «+» и «-».

Важное замечание! В реле давления Brio 2000 M нельзя настроить верхний порог давления воды. Данный параметр задан автоматически и составляет 3,5 атм. Винт регулировки позволяет задать нижний порог включения насоса, от 1 до 3,5 атм.

Как настроить реле давления Brio 2000 M

Заводские настройки нижнего порога включения реле давления составляют 1,5 атм. При необходимости данный параметр можно подкорректировать Для этого следует вращать регулировочный винт в сторону «-», чтобы сделать давление ниже или, наоборот, в сторону «+», чтобы сделать нижний порог включения насоса выше.

Какой нижний порог давления выставить на реле

Если совместно с насосом используется ещё и гидроаккумулятор, то давление на реле должно быть выставлено несколько выше, чем давление в гидроаккумуляторе. Вполне хватит увеличить нижний порог включения реле давления, до 1,7 атм. Что в итоге мы получим?

Читайте так же:
Как регулировать клапана 3zz

Какой нижний порог давления выставить на реле

Поскольку давление в гидроаккумуляторе с завода, также 1,5 атм., то насос будет успевать включаться, пока вся вода не выйдет из гидроаккумулятора. Простыми словами не будет такого, что вода в смесителе на 1-2 сек. перестанет идти, и только потом запуститься насос, чтобы подкачать воду.

Бывает и такое, что давление в гидроаккумуляторе падает. Случается это вследствие разных причин. В таком случае нужно обязательно подкачать давление в гидроаккумуляторе, и увеличить его значение до 1,5 атм.

В любом случае, для корректной работы реле давления и гидроаккумулятора, нужна разница давлений. И если гидроаккумулятор накачан до 1,5 атм., то нижний порог запуска насоса должен составлять не менее 1,6-1,7 атм.

Настройка реле давления Brio 2000 M italtecnica

Таким образом, можно успешно настроить реле давления Brio 2000 M на работу. Просто важно знать, что верхний предел давления в этом реле выставить нельзя, а вот нижний, порог включения, можно. Делается это с помощью регулировочного винта, который расположен внутри реле давления, под крышкой.

АВТОМАТИЧЕСКОЕ РЕГУЛИРОВАНИЕ ДАВЛЕНИЯ НЕФТИ В МАГИСТРАЛЬНОМ ТРУБОПРОВОДЕ

Ставится и решается задача снижения потребления электрической энергии частотно-регулируемым магистральным насосным агрегатом подачи нефти в переходных процессах системы автоматического регулирования давления. Для решения этой задачи предлагается использовать в дополнение к регулированию скорости вращения насоса основную и быструю дроссельные заслонки на трубопроводе. Модельные исследования подтверждают перспективность применения предложенной схемы САРД.

Ключевые слова: магистральный насос (МНА), система автоматического регулирования давления (САРД), дроссельная заслонка, байпас-контур.

Gromakov E. I. 1 , Starikov D. P. 2 , Rybakov E. A. 2

1 Candidate of Technical Sciences, 2 Student, National Research Tomsk Polytechnic University

AUTOMATIC OIL PRESSURE REGULATION IN MAIN PIPELINE

Abstract

The problem of energy consumption of a VFD-pump is being formulated and being solved in the article during automatic pressure control in a pipeline. To solve that problem the additional valve usage is being proposed. Model researches prove the prospect of proposed scheme of APCS.

Keywords: Main pump, automatic control system, throttle valve, bypass.

Магистральные насосные агрегаты (МНА) представляют собой сложные технические сооружения и играют ключевую роль в трубопроводном транспорте нефти. Одни из них предназначены для подачи нефти из подпорных насосов в магистральный нефтепровод, другие служат для восполнения энергетических потерь в магистральном нефтепроводе, а также для обеспечения гидродинамического разделения магистралей на заданные проектом участки с целью облегчения перекачки и локализации гидроударных эффектов в магистральном нефтепроводе.

Для обеспечения необходимого эксплуатационного режима работы магистральные насосные станции включают в себя последовательно соединенные насосы, МНА с высоким потреблением электрической энергии.

Центральной проблемой перекачки нефти является поддержание устанавливаемого нормативными требованиями давления. В последнее время сложилась практика, при которой регулирование давления и подача нефти в нефтепровод осуществляется за счет изменений скорости вращения насоса двигателя.

Целью данной работы является совершенствование системы автоматического регулирования давления (САРД) в магистральном нефтепроводе, позволяющее снизить расход электрической энергии частотно-регулируемого МНА в динамических режимах стабилизации давления.

Мощность, потребляемая насосом, которая может достигать мегаватт потребления электрической энергии, зависит от объемов подачи нефти по нефтепроводу Q и установленного напора H:

15-06-2018 12-13-02(1)

g и n – соответственно ускорение свободного падения и плотность нефти;

15-06-2018 12-14-39– соответственно к.п.д. насоса, устройств электрического питания, преобразователя частоты.

В сравнительных расчетах потребления энергии в частотно-регулируемых МНА рассматриваются, или установившиеся режимы работы, или режимы их пуска и не учитывается, что, если насос находится в контуре автоматического регулирования САРД, то в переходных режимах этого контура электропривод будет потреблять энергию на преодоление инерционного сопротивления, связанного с большими маховыми моментами на валу двигателя.

Читайте так же:
150см3 157qmj регулировка карбюратора

При плохом качестве регулирования (большой колебательности САРД и значительной величине ее перерегулирования) эти потери могут быть значительными [1].

Это следует из уравнения движения насосного агрегата:

15-06-2018 12-15-43(2)

15-06-2018 12-17-11– маховый момент насоса;

15-06-2018 12-17-25– момент, развиваемый приводом насоса;

ns – синхронная скорость вращения;

I – приведенный ток ротора;

R приведенное активное сопротивление ротора;

Mс – момент сопротивления на валу электропривода.

Из приведенного уравнения следует, что инерционные потери, связанные с непрерывным разгоном или торможением насоса в САРД с использованием частотно-регулируемого привода, оказываются пропорциональными маховому моменту насоса и ротора привода и ускорениям их в период переходного процесса.

Дроссельный принцип регулирования по этому показателю представляется сравнительно лучшим [2]. Из-за небольшой инерционности привода задвижек электрические потери в динамике переходного процесса позиционного перемещения регулирующего дроссельного органа оказываются меньшими по сравнению с насосным агрегатом.

Вот почему заманчивым решением задачи регулирования давления является использование комбинированной САРД, которая включала бы в себя и частотное регулирование МНА, и позиционное регулирование задвижкой. В такой схеме дроссельное исполнительного устройства, могло бы взять на себя динамическое противодействие высокочастотным составляющим возмущений давления в трубопроводе, а частотно-регулируемый привод МНА – низкочастотным составляющим.

Однако в сложившейся практике дроссельного регулирования используются низкоскоростные приводы и с учетом того, что электромеханическая постоянная времени привода МНА оказывается значительно меньшей по сравнению с дроссельным устройством, то для предлагаемого комбинированного регулирования САРД следует использовать дополнительное более быстродействующее исполнительное устройство. Таким устройством может быть дроссельная задвижка байпасного обводного трубопровода (ДБОТ), меньшего, чем основной, диаметра. Его назначение – обеспечить регулируемый быстрый перепуск транспортируемой нефти мимо основного трубопровод в небольших пределах, достаточных для противодействия «быстрым возмущениям».

Одновременно инерционность контура регулирования подачи насоса следует увеличить, чтобы обеспечить плавное изменение скорости насоса и тем самым снизить инерционное противодействие маховых составляющих МНА [3]. Это можно достичь путем использования низкочастотного фильтра в контуре управления насосного агрегата. Если в качестве фильтра использовать апериодическое звено вида

15-06-2018 12-20-09(3)

Где kф – коэффициент прямой передачи фильтра, а Tф – его постоянная времени). При выборе большого значения постоянной времени фильтра в контуре насоса можно алгоритмически обеспечить плавное изменение скорости вращения насоса. При этом, естественно, снизятся токи потребления приводом, вызванные изменениями подачи нефти и тем самым уменьшатся динамические потери электроэнергии.

Таким образом, в предлагаемой схеме САРД контур регулирования положением задвижки байпасного трубопровода будет обеспечивать подавление высоких частот динамики возмущений в магистральном трубопроводе, что обеспечит высвобождение контура регулирования подачи насоса от непосредственного динамического противодействия высокочастотным возмущениям давления в трубопроводе. При этом задачей контура регулирования подачи насоса будет являться противодействие низкочастотным составляющим возмущения. Важным является также решение этим контуром задачи максимального открытия выходной задвижки основного трубопровода в установившихся или квазиустановившихся режимах прокачки нефти.

Типовая схема системы НПС-трубопровод изображена на (Рис. 1).

15-06-2018 12-21-07

Рис. 1 – Типовая модель

Предлагаемая схема САРД показана на (Рис. 2).

15-06-2018 12-22-08

Рис. 2 – Структура управления давлением

Здесь контуры регулирования PID1+ПН, PID2+ПОЗ и PID3+ПБЗ соответствуют частотно регулируемым приводам (ЧРП) подачи нефти насосом, основной и байпасной задвижек трубопровода. Параметры этих контуров регулирования подбираются так, что при высокочастотном возмущении контур стабилизации давления задвижкой байпаса берет на себя начальное противодействие возмущению, а контур регулирования насосом медленно изменяет подачу нефти, возвращая в установившемся режиме возможное перемещение основной задвижки в состояние открытия, а байпасной в состояние закрытия. Это обеспечивается за счет использования автоматических контуров восстановления процента закрытия задвижек, соответствующих уставкам процентов открытия байпасной и основной задвижек (%#0,1 и %#0,9). Модель трубы описывается квадратичной зависимостью давления в трубопроводе от величины подачи МНА, а (Hdp , Qdp) является рабочей точкой подачи нефти в нефтепровод насосом (Рис. 3).

Читайте так же:
Регулировка карбюратора на квадроцикле 110 кубов

15-06-2018 12-23-24

Рис. 3 – Рабочая точка насосного агрегата

Для оценки работоспособности предлагаемой схемы САРД были выполнены модельные исследования в MatLAB Simulink. Структурная схема модели изображена на (Рис. 4).

15-06-2018 12-24-47

Рис. 4 – Структурная схема САРД

Модельные исследования показали, что все 3 контура в установившемся состоянии вносят пропорциональный (симметричный) вклад в формирование величины напора в трубе. Поэтому для реализации задуманной идеи было решено внести ассиметрию в работу контуров регулирования (Рис.5).

В модели САРД (Рис. 5) приняты следующие решения:

  1. Динамика САРД описывается вблизи рабочей точки МНА (Qdp, Pdp).
  2. Все контуры регулирования реализуются с использованием ПИД-регуляторов пакета Matlab.
  3. Ограничение скорости перемещения задвижек устанавливается Rate Limier.
  4. PID задвижек представляют собой объединение интегрирующих звеньев, описывающих изменение положения задвижек и пропорционально дифференцирующих алгоритмов управления ЧРП их приводом.
  5. Ограничение подачи нефти насоса устанавливается верхним пределом скорости вращения его привода вблизи рабочей точки.
  6. Ограничения положений приводов заслонок устанавливаются моментными ограничителями приводов.
  7. Ассиметрия работы контуров дроссельного управления приводами задвижек реализуется за счет использования сигнала неполного открытия основной задвижки в контуре байпасной задвижки
  8. Возмущения в виде ступенчатой (0 – 3 МПа) на 4000 сек и пилообразной функций (0 – 2 МПа) на 5000 сек формируются на участке временного интервала установившегося режима работы САРД.

15-06-2018 12-26-49

Рис. 5 – Модель САРД

Графики переходного процесса в момент возникновения возмущений и их отработка САРД при помощи двух задвижек и насоса приведены на (Рис. 6)

15-06-2018 12-29-28

Рис. 6 – Динамика контуров регулирования

Из полученных диаграмм (1-4) следует, что в процессе начального разгона основная задвижка полностью открывается (%открытия, степень открытия = 1) и выходное давление устанавливается равным заданному. Задвижка байпасной трубы занимает положение близкое к состоянию закрытия. Контур автоматического регулирования подачи нефти насосом стремится обеспечить заданное давление за счет максимальной подачи нефти насосом. Возмущение ступенчатого типа вызывает динамику всех контуров САРД. При этом контур насосного агрегата стремится обеспечить максимальное открытие основной задвижки за счет соответствующего изменения подачи нефти насосом. На ступенчатое изменение давления наиболее динамично реагирует байпасная задвижка, которая стремится максимально быстро открыться в начальный момент времени, а затем она прикрывается за счет изменения подачи нефти насосом. Возмущение пилообразной формы с периодом следования 200 сек практически мало влияют на изменение подачи нефти насосом. Это позволяет заключить, что насос не участвует коррекции быстрых динамических возмущений давления в трубопроводе и тем самым не расходуется электрическая энергия на инерционную динамику

Вывод

Предложена схема САРД потока нефти, которая включает в себя основную и быструю дроссельные заслонки. Она обеспечивает противодействие как быстрым, так и медленным возмущениям давления в магистральном нефтепроводе.

Снижение расхода электрической энергии частотно-регулируемого МНА в динамических режимах стабилизации давления достигается за счет реализации плавного изменения скорости вращения насоса благодаря медленной перестройки частоты питающего напряжения его электропривода.

Контур регулирования подачи нефти насосом позволяет непрерывно отслеживать соответствующую рабочую точку статического режима.

Контуры восстановления процента закрытия задвижек, соответствующих установленным уставкам процентов открытия, обеспечивают открытие основного трубопровода и необходимое прикрытие байпасного после завершения переходного процесса.

Выполненные в процессе модельных исследований различные параметрические перенастройки показывают легкость настройки САРД на переходные режимы работы с различными показателями качества регулирования.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector