Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

6 способов регулировки скорости двигателя с помощью ПЧ

6 способов регулировки скорости двигателя с помощью ПЧ

Любой преобразователь частоты имеет несколько каналов управления частотой выходного напряжения и, соответственно, скоростью вращения электродвигателя. Рассмотрим основные каналы на примере преобразователя VT Drive Fit.

Итак, скорость двигателя можно регулировать следующими способами.

1. Настройка параметра F0-08 в меню устройства. Заданное значение частоты программируется и запоминается. В процессе работы частоту можно оперативно менять при помощи клавиш «Вверх» и «Вниз». Этот канал управления выбирается установкой функции F0-03 = 0. Измененное значение частоты после выключения питания не сохраняется и при повторном включении вновь возвращается к значению, установленному в F0-08. Задать запоминание измененной в процессе работы частоты можно установкой параметра F0-03 = 1.

2. Использование аналоговых входов Ai1, Ai2, Ai3. Все три входа могут быть входами по напряжению, с диапазоном от 0 до 10 В. Вход Ai2 может использоваться как токовый — на плате имеется специальный джампер для переключения. Если необходимо наличие входа Ai3 (диапазон напряжения – от -10 до +10 В), применяется дополнительная плата расширения, которая заказывается отдельно. Для выбора этих каналов нужно задать F0-03 = 2, 3, 4.

3. Использование импульсного высокочастотного входа Di5. На этот вход могут быть поданы импульсы с напряжением от 9 до 30 В и частотой до 100 кГц. Соответствие между частотой на входе Di5 и выходной частотой преобразователя частоты VT Drive Fit определяется в параметрах F4-28…F4-31. Импульсы для работы на этом канале могут быть получены с вращающегося энкодера, с индуктивного или оптического датчика, а также с дискретного выхода другого ПЧ или контроллера. Для выбора данного канала устанавливается F0-03 = 5.

4. Если в работе требуется несколько значений частоты, их можно предварительно задать, используя многоскоростной (многоступенчатый) режим. Для этого необходимо установить F0-03 = 6. Код выбора частоты задается подачей сигналов на четыре дискретных входа Di.

5. Использование датчика ПИД-регулятора. Датчиком может быть любой преобразователь давления, температуры, напряжения в сигнал напряжения или тока. При этом реализуется обратная связь, позволяющая регулировать и поддерживать постоянными различные параметры технологических процессов. Для выбора этого канала устанавливается F0-03 = 8.

6. Выходную частоту можно менять путем подачи сигналов Up / Down на соответствующие дискретные входы. Для этого нужно функцию (F00…F4-10) этих входов установить на значения 6 и 7.

Выбор между источниками частоты

В общем случае можно выбрать 3 источника частоты, каждый из которых имеет каналы управления, перечисленные выше.

  1. Главный источник частоты Х. Выбор канала производится в параметре Х0-03.
  2. Вспомогательный источник частоты Y. Выбор канала производится в параметре Х0-04.
  3. Сочетание (суперпозиция) главного и вспомогательного источников, X и Y.

Примеры установки канала управления скоростью приведены для главного источника частоты Х. Для вспомогательного канала Y параметры задаются аналогичным образом. Максимальная выходная частота, независимо от канала и источника, ограничена параметром, заданным в параметре F0-10 (50…320 Гц).

Возможность регулировки частоты при помощи переменного резистора (потенциометра) отсутствует. Плавная регулировка возможна только путем применения внешнего потенциометра, подключенного на аналоговый вход Ai1…Ai3.

Регуляторы оборотов с поддержанием мощности в двигателях

Регулятор оборотов с поддержанием мощности

Практически во всех бытовых приборах и электроинструментах используется коллекторныйдвигатель. В более новых моделях болгарок, шуруповертов, ручных фрезеров, пылесосов, миксеров и других присутствует регулировка оборотов двигателя, но в более поздних моделях такой функции нет. Такими инструментами и бытовыми приборами не всегда удобно работать, и поэтому существуют регуляторы оборотов с поддержанием мощности.

Виды двигателей и принцип работы

Регулятор оборотов коллекторного двигателя 220в своими руками

Двигатели делятся на три типа: коллекторный, асинхронный и бесколлекторный. В большинстве электроинструментов стоит первый тип. Этот электродвигатель имеет довольно компактный размер. Его мощность значительно выше, чем у асинхронного, а цена довольно низкая. Что касается асинхронных, то этот тип в основном используется в металлообрабатывающей отрасли, а также широкое распространение они получили в угледобывающих шахтах. Довольно редко их можно встретить в быту.

Читайте так же:
Бензопила сибирь б 3800м регулировка карбюратора

Бесколлекторный электродвигатель используется там, где нужны большие обороты, точное позиционирование и малые размеры. Например, в различной медицинской технике, авиамоделировании. Принцип работы довольно прост. Если рамку прямоугольной формы, которая имеет ось вращения, поместить между плюсами постоянного магнита, то она начнет вращаться. Направление зависит от направления тока в рамке. В составе этого типа присутствуют якорь и статор. Якорь вращается, а статор стоит неподвижно. Как правило, на якоре стоит не одна рамка, а 4,5 или более.

Асинхронный двигатель работает по другому принципу. Благодаря эффекту переменного магнитного поля в статорных катушках он приводится во вращение. Если углубиться в курс физики, то можно вспомнить, что вокруг проводника, через который проходит ток, создается своеобразное магнитное поле, заставляющее вращаться ротор.

Схема регулятора оборотов коллекторного двигателя 220в

Принцип работы бесколлекторного типа основан на включении обмоток так, чтобы магнитные поля статора и ротора были ортогональны друг другу, а вращающий момент регулируется специальным драйвером.

На рисунке отчетливо видно, что для перемещения ротора нужно выполнить необходимую коммутацию, но и регулировать обороты не представляется возможным. Тем не менее бесколлекторный двигатель может очень быстро набирать обороты.

Устройство коллекторного двигателя

Коллекторный электродвигатель состоит из статора и ротора. Ротором называется часть, которая

Регулятор оборотов с поддержанием мощности схема

вращается, а статор является неподвижным. Еще одной составляющей электродвигателя являются графитовые щетки, по которым ток течет к якорю. В зависимости от комплектации могут присутствовать датчики Холла, которые дают возможность плавного запуска и регулировки оборотов. Чем выше подаваемое напряжение, тем выше обороты. Этот тип может работать как от переменного, так и от постоянного тока.

По классификации коллекторные двигатели можно разделить на те, что работают от переменного и от постоянного тока. Их также можно разделить по типу возбуждения обмотки: двигатели с параллельным, последовательным и смешанным (параллельно-последовательным) возбуждением.

Типы регулировки

Существует довольно много вариантов регулировки оборотов. Вот основные из них:

  • Блок питания с регулировкой выходного напряжения.
  • Заводские устройства регулировки, которые идут изначально с электромотором.
  • Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.

Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.

Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.

Схема регулятора оборотов двигателя постоянного тока 12в

Все номиналы электроэлементов обозначены на схеме. Это схема после сборки, работает довольно стабильно и обеспечивает плавную регулировку коллекторного двигателя. При уменьшении выходного напряжения мощность не уменьшается, что является весомым плюсом.

При желании можно собрать регулятор оборотов коллекторного двигателя 220 В своими руками. Эта схема собрана на базе симистора ВТА26−600, который предварительно необходимо установить на радиатор, так как при нагрузке этот элемент довольно сильно греется.

К готовой схеме возможно подключить электромотор, мощность которого не превышает 4 кВт.

Схема выглядит следующим образом.

Она успешно справится с регулировкой таких электроинструментов, как дрель, болгарка, циркулярка, лобзик. При желании можно использовать схему в качестве регулятора мощности ТЭН-ов, обогревателей и в качестве диммера. К минусам можно отнести невозможность регулировки мощности приборов, которые питаются от постоянного тока.

Регуляторы мощности постоянного тока

Иногда возникает потребность в регулировке оборотов коллекторного двигателя постоянного тока.

Читайте так же:
Как отрегулировать самостоятельно противотуманные фары

Регулятор оборотов электродвигателя 12в своими руками

Если потребитель не имеет большой мощности, то возможно последовательно подсоединить переменный резистор, но тогда КПД такого регулятора резко упадет. Существуют схемы, при помощи которых возможно довольно плавно регулировать обороты, не уменьшая КПД. Такой регулятор подойдет для изменения яркости различных ламп, напряжения питания, не превышающего 12 В. Эта схема также выполняет роль стабилизатора частоты вращения, при изменении механической нагрузки на вал обороты остаются неизменными.

Эта схема регулятора оборотов двигателя постоянного тока 12 В вполне подойдет для регулировки и стабилизации оборотов двигателей с током, не превышающим 5 А. В эту схему входит драйвер на биполярных транзисторах и таймер 7555, что обеспечивает стабильную работу и плавную скорость регулировки. Цена на детали довольно низкая, а это является несомненным плюсом. Можно также собрать регулятор оборотов электродвигателя 12 В своими руками.

Асинхронный двигатель и регулятор оборотов

Схема регулировки оборотов двигателя постоянного тока 12в

Как правило, этот тип применяется на различных производствах, начиная от шахт и заканчивая металлообрабатывающими отраслями. Например, в угольных шахтах для плавного пуска конвейерных лент используется пускатель АПМ, в который встроено устройство на тиристорах, позволяющее плавно запустить конвейер. Асинхронный однофазный двигатель применяется также в автомобилях, вентиляторах печек, двигателях, которые приводят в движение дворники, бытовых вентиляторах, питающихся от напряжения 220 В. В машине двигатели работают от постоянного напряжения 12 вольт, но плавный запуск в них не предусмотрен.

Для регулировки оборотов асинхронного двигателя применяются так называемые частотные преобразователи. Эти преобразователи позволяют кардинально менять форму и частоту сигнала. Как правило, такие преобразователи собраны на базе мощных полупроводниковых транзисторов и импульсных модуляторов, а всеми элементами управляет ШИМ-контроллер.

Следует помнить: чем плавней разгон двигателя, тем меньше он испытывает перегрузок. Это касается редукторов, конвейеров, мощных насосов, лифтов. Вот одна схема регулятора оборотов асинхронного двигателя 220 В.

С помощью этой схемы можно регулировать обороты двигателей, мощность которых не превышает 1 тыс. Вт. При сборке этой схемы есть нюансы, которые необходимо учесть:

Регуляторы оборотов с поддержанием мощности в двигателях

  • Тип соединения «треугольник».
  • Необходим драйвер трехфазного моста IR2133.
  • Микроконтроллер AT90SPWM3B.
  • Для прошивки микроконтроллера необходим программатор.
  • Мощные транзисторы IRG4BC30W или их аналоги.
  • ЖК-дисплей в качестве индикатора.
  • Импульсный блок питания, который можно купить или собрать собственноручно.

Из-за значительного нагрева диодный мост и силовые транзисторы необходимо установить на радиатор. Если предполагается подключение двигателя мощностью до 400 Вт, то термодатчик ставить необязательно, а для управления можно использовать опторазвязку.

Чтобы увеличить срок службы различных видов двигателей, рекомендуется пользоваться регуляторами оборотов, решающими большое количество проблем.

Реостатное управление электродвигателем

Реостатное управление является простейшим способом управления двигателем. При этом способе обычно осуществляется пуск, остановка и в некоторых случаях регулирование скорости вращения (для электродвигателей постоянного тока).

При постоянном токе пусковой реостат включается последовательно с обмоткой якоря электродвигателя. Сопротивление обмотки якоря очень незначительно (оно измеряется сотыми или десятыми долями ома), и если бы в момент пуска электродвигателя в ход подключить ее непосредственно к сети на полное напряжение последней, то по обмотке пройдет очень большой ток, который может сжечь изоляцию обмотки. Вводя последовательно обмотке якоря пусковой реостат, мы увеличиваем сопротивление цепи и, следовательно, уменьшаем проходящий в обмотке ток.

Когда якорь вследствие взаимодействия между проходящим по его обмотке током и магнитным полем приходит во вращение, то в обмотке якоря, последовательно с которой в первый момент бывает включено все сопротивление пускового реостата, возникает противоэлектродвижущая сила. Ток в обмотке якоря определяется разностью напряжения на зажимах двигателя и противоэлектродвижущей силы (U — Е): чем меньше эта разность, тем меньше ток в цепи якоря; с увеличением скорости вращения ротора двигателя растет и противоэлектродвижущая сила, поэтому разность U — Е уменьшается. Вследствие этого возрастание тока в обмотке и увеличение скорости вращения якоря прекращаются.

Читайте так же:
Регулируем рулевые тяги развал схождение

Якорь вращается со скоростью, меньшей нормальной. Тогда передвижением рукоятки пускового реостата выводят часть (секцию или ступень) его сопротивления из цепи якоря. Вследствие этого ток в якоре возрастает, увеличивается скорость вращения якоря и растет противоэлектродвижущая сила, уменьшается ток и устанавливается новая (большая чем первая) скорость вращения ротора. Затем выводят из цепи якоря следующую ступень реостата и т. д., пока все сопротивление реостата не будет выведено из цепи якоря. При полностью выведенном сопротивлении реостата электродвигатель развивает полное (нормальное) число оборотов, противоэлектродвижущая сила достигает наибольшего значения, и ток в якоре, даже при выведенном сопротивлении, не достигает значений, угрожающих изоляции обмотки.

Таким образом, в начале пуска электродвигателя в ход пусковой реостат должен быть полностью введен в цепь якоря, а к концу пуска — полностью выведен. Пуск электродвигателя занимает лишь несколько секунд. Пусковой реостат не рассчитан на длительное прохождение по нему тока, поэтому оставлять долго ту или иную ступень (секцию) его под током нельзя. Однако и слишком быстрое выведение реостата из цепи якоря также недопустимо, так как изоляция обмотки якоря может при этом сгореть. Передвигать рукоятку реостата следует не слишком быстро, плавно, без рывков.

При реостатном управлении регулирование скорости электродвигателя осуществляется путем изменения его магнитного потока.

Рассмотрим соединение регулировочного реостата с двигателем параллельного возбуждения, изображенное на рис. 1.

Соединение регулировочного реостата с двигателем параллельного возбуждения

В показанном на рисунке положении ток от одного зажима Я1 электродвигателя идет по обмотке возбуждения Ш2 — Ш1, поступает в клемму реостата Ш, а отсюда через рукоятку реостата, плоское контактное кольцо и клемму Л возвращается ко второму полюсу Я2 двигателя. При этом ток не проходит по спиралям реостаа сопротивление реостата, как говорят, выведено. Поэтому по обмотке возбуждения Ш1 — Ш2 будет протекать полный намагничивающий ток. Если же передвинуть рукоятку реостата по часовой стрелке, то в цепь возбуждения окажется включенной часть сопротивления реостата. Тогда сила тока возбуждения и магнитный поток уменьшатся, скорость вращения якоря возрастет.

В тех случаях, когда необходимо во время работы увеличивать и уменьшать скорость вращения приводимого механизма, применяется электродвигатель с номинальным числом оборотов, несколько меньшим, чем требуется для нормальной работы машины (станка, насоса и т. д.). Так, если показанный на рис. 1 электродвигатель имеет номинальное число оборотов, меньшее, чем требуется для нормальной работы приводимого механизма, то, поставив рукоятку регулировочного реостата вертикально (заштрихованным концом вверх), т. е. введя в цепь обмотки возбуждения половину сопротивления реостата, мы тем самым увеличим скорость двигателя до нормальной. А когда потребуется изменить эту скорость, то мы можем: а) двигая рукоятку реостата влево, уменьшить скорость двигателя, так как при этом мы уменьшаем сопротивление цепи возбуждения, т. е. увеличиваем ток возбуждения и, следовательно, создаваемый последним магнитный поток, б) двигая рукоятку реостата вправо, увеличить число оборотов, так как при этом мы увеличиваем сопротивление цепи возбуждения, т. е. уменьшаем ток возбуждения и, следовательно, магнитный поток.

Для регулирования скорости вращения двигателя последовательного возбуждения путем изменения магнитного потока регулировочный реостат соединяется с электродвигателем так, как показано на рис. 2. Регулировочный реостат R включается параллельно обмотке возбуждения Rдв. Ток сети I, пройдя через якорь Я, разветвляется: часть его Iдв проходит в обмотке возбуждения и часть Iд — в сопротивлении реостата. При уменьшении сопротивления реостата ток в обмотке возбуждения уменьшится и скорость двигателя увеличится. Надо заметить, что регулирование этим способом скорости вращения двигателя последовательного возбуждения сопровождается гораздо большей потерей электроэнергии, чем регулирование скорости двигателя параллельного возбуждения, т.к. величина тока, проходящего в регулировочном реостате двигателя последовательного возбуждения, достигает сравнительно большой величины. Сам реостат получается при этом громоздким и более дорогим, чем регулировочный реостат двигателя параллельного возбуждения.

Читайте так же:
Принцип регулировки развала и схождения автомобиля

Регулирование скорости вращения двигателя последовательного возбуждения

Принципиальная схема присоединения к сети двигателя параллельного возбуждения

Регулировочные реостаты применяются не всегда, так как в целом ряде случаев регулирования скорости двигателей не требуется.

На рис.3 приведена упрощенная принципиальная схема присоединения к сети двигателя параллельного возбуждения. Двигатель присоединяется к сети через двухполюсный рубильник и следующий за рубильником двухполюсный предохранитель (для того чтобы в случае перегорания плавкой вставки предохранителя можно было разомкнуть рубильник и заменить перегоревшую вставку новой, не подвергаясь опасности поражения электрическим током). Включенный последовательно с обмоткой якоря пусковой реостат имеет холостой контакт а. При подготовке двигателя к пуску в ход рукоятка пускового реостата обязательно должна быть установлена на холостом контакте, при этом цепь реостата (и, следовательно, цепь якоря) разомкнута. При пуске двигателя в ход сначала замыкают двухполюсный рубильник, а затем рукоятку реостата переводят с холостого контакта на ближайший к нему рабочий контакт, замыкая цепь якоря.

Одновременно с этим обмотка возбуждения оказывается подключенной на полное напряжение сети через изогнутую планку реостата в.

Перемещая затем рукоятку пускового реостата вправо не слишком быстрым, плавным движением, устанавливают ее на последнем рабочем контакте б, т. е. постепенно выводят все сопротивление реостата из цепи якоря, вследствие чего скорость двигателя достигает номинальной величины.

При остановке двигателя рекомендуется отключить его от сети пусковым реостатом, для чего переводят рукоятку его быстрым движением на холостой контакт и тем самым разрывают цепь якоря, после чего размыкают рубильник. Если соединить проводником л контактную планку с первым рабочим контактом, то при переводе рукоятки реостата на холостой контакт мы не разрываем цепь обмотки возбуждения: она оказывается при этом замкнутой через реостат на обмотку якоря. Вследствие этого электродвижущая сила самоиндукции не может достигнуть значительной величины, и следовательно, опасность пробоя изоляции обмотки возбуждения устраняется.

Очень часто при остановке двигателя размыкают сначала рубильник, а затем уже переводят рукоятку реостата на холостой контакт.

Реостатный пуск для асинхронных двигателей с фазным ротором

При любом из этих двух способов рукоятка пускового реостата после остановки двигателя обязательно должна оставаться на холостом контакте для того, чтобы при новом пуске двигателя в ход не могло быть произведено ошибочного включения его в сеть при выведенном из цепи якоря реостате. Существуют пусковые реостаты, снабженные автоматическим устройством, переводящим рукоятку на холостой контакт, когда двигатель останавливается или исчезает напряжение в сети.

Реостатный пуск у электродвигателей переменного тока применяется для асинхронных двигателей с фазным ротором (рис. 4). При пуске такого двигателя сначала замыкается рубильник, включающий в сеть обмотки статора, затем постепенно выводят сопротивление реостата. В конечном его положении обмотки ротора замыкаются накоротко, а электродвигатель развивает номинальное число оборотов.

Регулятор скорости коллекторного двигателя

Вы можете приобрести готовое устройство (без шунта, и переменного резистора) . Для заказа нажмите на кнопку или направьте заказ на почту sales@digect.ru.

Регулятор скорости коллекторного двигателя с компенсацией нагрузки и защитой от перегрузки предназначен для изменения скорости вращения двигателя. При включении обеспечивая плавный старт при этом скорость вращения двигателя стабилизируется в независимости от нагрузки на валу двигателя (константная электроника).

Регулятор выполнен на ИМС U2010B и подойдет для большинства электроинструмента (болгарки, торцовки, фрезеры и т.п), оснащенного коллекторным двигателем (двигатель со «щетками») мощностью не более 2200 Вт.

Особенности

Update: Для нормальной работы функции плавного старта, выключатель должен находится в цепи 220В.

  1. Плавный старт. При подаче питания двигатель запускается плавно и без рывка, что сбережет редуктор, предохранит двигатель от преждевременного износа.
  2. Защита от перегрузки. При чрезмерной нагрузке на валу двигателя светодиод на регуляторе загорится указывая на то, что устройство перегружено, с еще большим увеличением нагрузки (вплоть до заклинивания) — регулятор остановит двигатель, восстановление работоспособности двигателя будет осуществлено согласно установленному режиму работы (см режимы работы).
  3. Функция регулирования оборотов двигателя. Возможность изменять обороты двигателя от нуля до максимума.
  4. Функция стабилизации оборотов двигателя. В середине диапазона оборотов регулятор будет пытаться стабилизировать обороты двигателя вне зависимости от нагрузки на валу двигателя.

Внимание!

Устройство, находится под высоким напряжением и не имеет гальванической развязки от питающей сети. Поэтому при работе с ним нужно соблюдать предельную осторожность. ВСЕ МАНИПУЛЯЦИИ с регулятором можно проводить ТОЛЬКО ПОСЛЕ ВЫКЛЮЧЕНИЯ ПИТАНИЯ И ПОЛНОГО ОТКЛЮЧЕНИЯ ИХ ОТ СЕТИ В регуляторе отсутствует предохранитель, поэтому необходимо предусмотреть его установку. Эксплуатация устройства без предохранителя не допускается так как в случае короткого замыкания это может привести к пожару и другим негативным последствиям.

Регулятор оборотов может работать в трех режимах, которые определяются положением перемычки X1.

Читайте так же:
Как отрегулировать карбюратор на мотоблок кадви

Режимы работы.

  1. Индикация перегрузки и последующий сброс на минимальные обороты. Для восстановления рабочих оборотов, необходимо выключить инструмент.
  2. Индикация перегрузки, последующий сброс на минимальные обороты, после снятие нагрузки с инструмента, восстанавливаются установленные обороты, т.е. происходит авто старт. Данный режим устанавливается при отсутствии перемычки, и является режимом по умолчанию.
  3. Только индикация перегрузки, без остановки двигателя и защиты.

Внешний вид и расположение элементов.

  1. Напряжение питания ≈220 В.
  2. Нагрузка, коллекторный двигатель. Максимальная нагрузка 2.2 кВт
  3. Светодиод индикации перегрузки. (в версии 2021 года,установлен SMD светодиод — посмотреть)
  4. Регулировка компенсации нагрузки.
  5. Регулировка перегрузки.
  6. Переменный резистор регулировки оборотов двигателя.
  7. Регулировка пределов регулировки скорости.
  8. Перемычка для установки режима работы устройства.
  9. Шунт R6, измерителя тока.

В версии 2021 года установлен smd светодиод, при этом отверстия для монтажа обычного светодиода оставлены, если вы хотите установить выводной светодиод (иногда это необходимо, если вы хотите удалить индикацию от платы при установке его в корпус), удалите штатный smd светодиод и впаяйте необходимый вам.

Обращаю ваше внимание на то, что включая устройство с неподключенным шунтом вы можете вывести из строя ИМС U2010B! Не подавайте питание на регулятор пока не смонтируете на нем шунт и переменный резистор.

Размеры изделия (63 мм x 42 мм).

Регулировка изделия.

Установите переменный резистор в положение соответствующем минимальным оборотам , подстроечный резистор R10 (компенсация нагрузки) установить в среднее положение , включаем устройство к сети 220В. Резистором R8 (amax) выставить минимальные обороты, Минимальные обороты должны быть таковы чтобы при включении питания двигатель начинал устойчиво вращаться. Далее необходимо настроить компенсацию нагрузки. Необходимо отметить что компенсация нагрузки, работает не во всем диапазоне оборотов двигателя, например на максимальных оборотах невозможно регулировать нагрузку так как на двигатель всегда подается максимальное напряжение. Установите обороты двигателя в среднее положение, при этом увеличивая нагрузку на валу любым доступным способом, например зажимая вал двигателя тряпкой, добейтесь поворотом резистора R10 такого состояния чтобы обороты двигателя были стабильными в независимости от нагрузки. В последнюю очередь настройте защиту от перегрузки. Выставьте обороты двигателя близко к минимальным и попробуйте затормозить двигатель выставив резистором R11 такое положение при котором при повышенной нагрузке загорался светодиод VD2, а при чрезмерном либо при заклинивании двигатель обесточивался.

На симистор VS1 для охлаждения возможно придется установить радиатор, а при мощности устройства более 1 кВт его установить просто необходимо чтобы избежать выход из строя устройства в результате перегрева.

Устройство может работать некорректно, если на двигателе установлена «конкурирующая» электроника, как пример в дисковой пиле Интерскол ДП-190 (посмотреть), установлен «плавный старт» и если его не убрать, то пила будет дергатся, обороты плавать, убедитесь что у вас нет ничего подобного!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector