Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое частота сети

Что такое частота сети?

Частота — это количество изменений направления тока за секунду. Для измерения частоты используется международная единица герц (Гц). 1 герц равен 1 колебанию в секунду. Герц (Гц) = 1 герц равен 1 колебанию в секунду.

Что такое частота 50 герц?

В электрической сети переменного тока частота равна 50 Гц. Ток пятьдесят раз в секунду идет в одну сторону и пятьдесят раз в обратную. … Ее следует выражать не в герцах, а в радианах в секунду. При принятой частоте промышленного тока 50 гц максимально возможное число оборотов генератора — 50 об/сек (р = 1).

Какое соотношение между периодом и частотой переменного тока?

, в течение которого переменный периодический ток совершает полный цикл своих изменений, возвращаясь к своей исходной величине, называется периодом переменного тока. Частота переменного тока численно равна числу периодов по отношению к промежутку времени.

Почему частота тока 50 Гц наиболее опасна?

Отдельно стоит отметить, что токи с частотами от 50 Гц до 200 Гц кратные частоте работы сердца особы опасны, так как могут вызвать фибрилляцию. Также такие токи нарушают биохимических функций клетки.

Какая частота тока в электрической сети?

В мире наиболее распространены два основных стандарта напряжения и частоты. Один из них — американский стандарт 100—127 вольт 60 герц, совместно с вилками A и B. Другой стандарт — европейский, 220—240 вольт 50 герц, вилки типов C — M.

Сколько Гц в сети?

В странах Европы и СНГ принят стандарт 220-240 вольт 50 герц, в североамериканских странах и в США — 110-120 вольт 60 Гц, а в Бразилии 120, 127 и 220 вольт 60 Гц. Кстати, непосредственно в США в розетке порой может оказаться, скажем, 57 или 54 Гц.

Чему равен 1 герц?

Частота — это количество изменений направления тока за секунду. Для измерения частоты используется международная единица герц (Гц). 1 герц равен 1 колебанию в секунду. Герц (Гц) = 1 герц равен 1 колебанию в секунду.

Как найти частоту переменного тока формула?

Частота переменного тока, Гц: f= 1/T = np/60, где п — частота вращения генератора, мин -1; р – число пар полюсов генератора.

Чему равна угловая частота переменного тока с частотой 50 Гц?

Чему равна угловая частота переменного тока частотой 50 Гц. ω = 2πν = 100π = 314.

Чему равна циклическая частота переменного тока?

Численно угловая (циклическая) частота равна числу циклов (колебаний, оборотов) за 2π единиц времени. тогда как обычная резонансная частота В то же время ряд других формул усложняется.

Какая частота тока наиболее опасна для человека?

Частота (для переменного тока).

Ток частотой до 500 Гц считается относительно безопасным, как и ток частотой свыше 1 тыс. Гц. Самые опасные значения — 600–900 Гц.

Как влияет частота тока?

Другими словами, при варьировании частоты тока происходит изменение ёмкостного сопротивления, изменение которого, в свою очередь, приводит к изменению тока, протекающего по цепи. То есть при повышении частоты, снижается ёмкостное сопротивление, и повышается ток, протекающий по цепи.

Сколько герц безопасно для человека?

Высота измеряется в герцах (Гц), громкость – в децибелах (дБ). Для нормально слышащего человека диапазон слухового восприятия начинается на низких частотах, около 20 Гц.

Какое напряжение допускается в сети?

В стандартном многоквартирном доме норма напряжения составляет 220В. Частота сети в норме составляет 50 Гц. Существует допустимые отклонения в 5%, то есть от 209 до 231В, также есть предельно допустимые нормы в 10% (198 — 242В).

Какая частота тока в России?

Параметры сетевого напряжения в России Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц).

12 важных вопросов о выборе преобразователя частоты

Преобразователи частоты (ПЧ) – один из основных элементов комплексных решений для энергетических и промышленных проектов. Современные частотные преобразователи – это продукт высоких технологий, они выпускаются с применением новейших разработок и способны не только управлять скоростью вращения электродвигателя, но и защищать электропривод от преждевременного выхода из строя, обеспечивать контроль множества параметров во время его работы. Грамотно выбрать преобразователь частоты, сориентировавшись в многообразии предложений – задача сложная и ответственная, ведь от принятого решения зависит стабильность производственных процессов. Разобраться со всеми тонкостями выбора поможет наша статья.

Читайте так же:
Не работает регулировка фар дэу нексия

Статья состоит из трех частей. Здесь вы можете прочитать часть 2 и часть 3.

Часть 1. Зачем нужен преобразователь частоты?

Частотный преобразователь – незаменимое оборудование в любой сфере, где используются электродвигатели. Он обеспечивает плавный пуск, непрерывное автоматическое регулирование скорости и момента во время работы и множество других параметров работы электродвигателя. В ряде применений преобразователи обеспечивают снижение потребления электроэнергии до 50%. Современные ПЧ с широтно–импульсной модуляцией (ШИМ) способны снижать пусковые токи в среднем в 4-5 раз и выдерживать перегрузки до 200%.

На сегодняшний день в Интернете можно найти большое количество рекомендаций и советов по подбору ПЧ, однако в большинстве случаев они являются общими, неконкретными и никак не применимы на практике. Как же сориентироваться в огромном количестве критериев и выбрать «свое» оборудование? Рекомендации дают специалисты IEK GROUP, одного из ведущих российских производителей и поставщиков электротехнического оборудования: Артем Мошечков (ведущий инженер) и Петр Ивлев (специалист по техническому обучению Академии IEK GROUP).

Зачем устанавливать и использовать преобразователь частоты?

Артем Мошечков:

– Данное оборудование решает сразу несколько задач: управляет скоростью вращения электродвигателя, защищает его и в определенных режимах обеспечивает энергосбережение. ПЧ снижает слишком большой пусковой ток и момент, исключая удары, рывки и повышенные механические нагрузки на привод. Также преобразователь частоты позволяет защищать электродвигатель при коротком замыкании, страхует при отклонениях от номинального напряжения сети, контролирует температуру механизма, не допускает перегрева. Таким образом ПЧ обеспечивает более длительную и надежную работу привода, минимизирует затраты на обслуживание и ремонт. Кроме того, в определенных сферах применения и режимах работы преобразователь частоты снижает потребление электроэнергии на 30-50%.

Есть задача: выбрать и купить преобразователь частоты. С чего начать?

– Модельный и функциональный ряд современных преобразователей частоты предлагает множество вариантов для решения широкого спектра задач. От самых простых до обеспечивающих управление сложнейшими автоматизированными электроприводами. Существует несколько основных критериев, основываясь на которых следует принимать решение о выборе той или иной модели частотного преобразователя.

Чтобы подобрать нужный вариант ПЧ, необходимо прежде всего определиться: для каких именно целей выбирается оборудование, какие конкретные задачи оно должно выполнять. Разумеется, необходимо знать основные характеристики электродвигателя, для управления которым необходим ПЧ, и условия эксплуатации.

Современные серии преобразователей частоты включают до нескольких десятков моделей. Например, в линейке CONTROL-L620 IEK ® , выведенной на рынок нашей компанией в 2017 году, представлено оборудование от 0,75 до 560 киловатт. В «семействе» CONTROL-А310 IEK ® диапазон мощностей — до 22 киловатт, при этом уже с 11 киловатт есть возможность изготовить преобразователь со встроенным дросселем постоянного тока, что продлевает срок службы преобразователя. Номинальные напряжения – 220 и 380 В.

ПЧ CONTROL-L620 IEK ®

ПЧ CONTROL-A310 IEK ®

Такой бренд как ONI ® предлагает сразу четыре марки частотных преобразователей: ONI-А400, ONI-М680, ONI-A650 и ONI-К800 – в диапазоне мощностей от 0,4 до 132 кВт.

A400 ONI ® «Компактный»

M680 ONI ® «Универсальный»

A650 ONI ® «Специализированный»

K800 ONI ® «Мощный»

Мощность, номинальный ток, напряжение питающей сети: как сориентироваться в этих параметрах?

– Указанные критерии очень важны для оптимальной работы оборудования.

Мощность ПЧ должна быть либо равна мощности двигателя, либо превышать ее. В случаях «тяжелого» применения, с высокими пусковыми нагрузками, допускается, чтобы мощность преобразователя была выше на одну, реже – на две ступени. Современные преобразователи частоты имеют большой диапазон мощности. Опять же обратимся к конкретным примерам оборудования: в линейке серии CONTROL-A310 представлены модели с мощностью от 0,4 до 22 кВт в режиме HD и от 0,75 до 22 кВт в режиме ND. Преобразователи частоты CONTROL-L620 поддерживают мощность в режиме HD от 0,75 до 500 кВт, в режиме ND — от 1,5 до 560 кВт. Есть более «узкий» разбег: например, ПЧ линейки ONI-А400 работают в пределах мощности от 0,2 до 3,7 кВт.

Следующий критерий – номинальный ток. Электропривод не работает в идеальном режиме, всегда есть вероятность изменений динамических нагрузок на валу или превышения значений номинального тока. Поэтому наряду с мощностью при выборе ПЧ обращают внимание на номинальный ток электродвигателя и преобразователя частоты – рабочее значение данного параметра у ПЧ берется либо с запасом относительно номинального тока двигателя, либо номинал в номинал. Это делается для того, чтобы обезопасить электропривод от возможных перегрузок.

Читайте так же:
Регулировка клапанов когда нет инструментов

Если говорить о напряжении питающей сети, то самыми распространенными моделями, которые используются на производстве, в ЖКХ и прочих сферах народного хозяйства, являются преобразователи напряжения 220 и 380 В. Напомню: значение данного параметра питающей сети и электродвигателя должно быть одинаковым.

Какой преобразователь частоты лучше – однофазный или трехфазный?

Артем Мошечков:

– В Интернете можно прочитать, что однофазный преобразователь частоты обладает менее широким спектром возможностей, но это не так. Он способен решать все поставленные задачи.

На вход инвертора такого ПЧ подается однофазное напряжение соответствующей сети, которое на выходе формируется в трехфазное с частотой от 0 до 400 и выше Гц. Таким образом, при помощи однофазного ПЧ можно подключить обычный асинхронный трехфазный двигатель к однофазной сети. Для этого требуется подключить двигатель к преобразователю, правильно скоммутировав обмотки двигателя (на напряжение 220 В). Такие преобразователи частоты есть в «семействе» ONI – это серия А400, которая предназначена для управления асинхронными двигателями в системах небольшой мощности, но с большими перегрузками.

Трехфазные преобразователи частоты более распространены, они преобразуют напряжение трехфазной промышленной сети и регулируют большое количество параметров электродвигателя. Примеры оборудования: CONTROL-A310 IEK ® , CONTROL-L620 IEK ® , ONI-А400, ONI-М680, ONI-A650 и ONI-К800.

Регулирование координат электропривода с асинхронным двигателем изменением частоты напряжения.

Данный способ, называемый иногда частотным, широко исполь­зуется для качественного регулирования в первую очередь скорос­ти АД и широко применяется в настоящее время. Принцип его зак­лючается том, что изменяя частоту f1 питающего АД напряжения, можно в соответствии с выражением

изменять его ско­рость ω, получая различные искусственные характеристики.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а получаемые при этом характеристики обладают высо­кой жесткостью.

Частотный способ к тому же отличается и еще од­ним весьма важным свойством: регулирование скорости АД в этом случае не сопровождается увеличением его скольжения, поэтому по­тери мощности оказываются небольшими.

Необходимым элементом ЭП является преобразова­тель частоты, на вход которого подается стандартное напряжение сети U1 (220, 380 В и т.д.) промышленной частоты

f1 = 50 Гц, а с выхода снимается переменное напряжение U1 рег , регулируемой частоты f 1 рег .. Регулирование выходной частоты осу­ществляется с помощью управляющего сигнала Uу , который задает требуемое значение скорости двигателя 2.

Анализ механических характеристик двигателя показы­вает, что скорость идеального холостого хода двигателя изменяет­ся пропорционально частоте напряжения, а критический момент Мк остается неизменным

Механические характеристики (см. рис. 13.4.) при частотном регулировании разделяются на характеристики, соответствующие частотам

· ниже номинальной (сетевой) f1ном.

· выше номинальной (сетевой) f1ном.

Рис.13.3. Схема управления изменением частоты напряжения, подводимого к статору асинхронного двигателя.

Рис.13.4. Семейство механических характеристик при изменении частоты напряжения статора

Область частот f1 < f1ном

В этой области частота напряжение, подводимого к АД, регулируется от номинальной (сетево­й) в сторону уменьшения.

В этой области Мк = const и АД имеет постоянную перегрузочную способность.

Область частот f1 ˃ f1ном

В этой области частота напряжение, подводимого к АД, регулируется от номинальной (сетево­й) в сторону увеличения.

В этой области кри­тический момент Мк будет уменьшаться при увеличении частоты

Принцип действия преобразователей частоты.

Различные ПЧ, которые нашли применение в частотных асинхронных ЭП, можно разделить на две группы:

  • электромашинные вращающиеся преобразователи частоты.
  • статические преобразователи частоты

а) Электромашинные вращающиеся ПЧ, в них для получения переменной частоты используются обычные или специальные электрические машины.

Рис.13.5. Схема электромашинного вращающегося преобразователя частоты.

1 – двигатель асинхронный

2 – генератор постоянного тока

3 — регулируемый двигатель постоянного тока

4 – синхронный генератор

5…7 – двигатели электроприводов

На рис. 13.5. приведена схема ПЧ с синхронным генератором 4,от которого питаются три асинхронных двигателя 5. 7. Преобразо­ватель состоит из двух частей: агрегата постоянной скорости, вклю­чающего в себя асинхронный двигатель 1 (вместо него может быть использован двигатель любого типа) и приводимый им во враще­ние генератор постоянного тока 2, и агрегата переменной скорос­ти, состоящего из регулируемого двигателя постоянного тока 3, при­водящего во вращение синхронный генератор переменной часто­ты.

Читайте так же:
Результаты регулировки развала схождения

Двигатель 1питается от сети со стандартной частотой f1 = 50 Гц, а на выводах синхронного генератора 4 частота и напряжение мо­гут регулироваться. С помощью резистора R1 в цепи обмотки воз­буждения генератора 2изменяется напряжение, подводимое к яко­рю двигателя 3, и тем самым его скорость и скорость генератора 4.

При этом меняется частота напряжения на выводах синхронного генератора 4, определяемая выражением , а значит, и на двигателях 5. 7.

Напряжение на этих двигателях регулируется с помощью резистора R3, включенного в цепь обмотки возбуждения синхронного генератора 4.

Применение ПЧ позволяет плавно регулировать скорость дви­гателей 5. 7 в широком диапазоне.

Однако процесс регулирования частоты в электромашинном ПЧ имеет существенные недостатки:

· Для создания такого преобразователя необходимы четыре элек­трические машины, рассчитанные на полную мощность потребите­лей (группы АД), что определяет его громоздкость и высокую цену, особенно при больших мощностях нагрузки.

· Двойное преобразо­вание энергии — энергии переменного тока с частотой f1 = 50 Гц в энергию постоянного тока и затем опять в энергию переменного тока регулируемой частоты — сопровождается потерей энергии во всей цепи, определяя невысокий КПД системы.

· Коллекторные машины постоян­ного тока требуют непрерывного надзора и ухода при эксплуата­ции, а их работа сопровождается шумом.

· Процесс из­менения частоты в электромашинном ПЧ инерционен, что объяс­няется механической инерцией электромашинного агрегата.

б) Стати­ческие ПЧ,названные так потому, что в них используются не имею­щие движущихся частей элементы и устройства.

Существует два основных типа статических преобразователей частоты:

  • с непосредственной связью
  • с промежуточным контуром постоянного тока.

В первом случае выходное напряжение синусоидальной формы формируется из кусочков ( участков) синусоид преобразуемого входного напряжения. При этом максимальное значение выходной частоты принципиально не может быть равным частоте питающей сети. Частота на выходе преобразователя этого типа обычно лежит в диапазоне от 0 до 25-33 Гц.

Наибольшее распространение получили преобразователи частоты с промежуточным контуром постоянного тока, выполненные на базе инверторов напряжения.

Рис.13.5. Типовая схема преобразователя частоты

  • сеть переменного тока
  • неуправляемый выпрямитель В
  • конденсатор LC-фильтра
  • автономный инвертор напряжения И с широтно-импульсной модуляцией (ШИМ)
  • асинхронный двигатель АД, к которому приложено переменное 3-фазное напряжение с регулируемой частотой f = var и амплитудой U = var ;
  • управление инвертором осуществляется блоком управления БУ.

Звено постоянного токасостоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока (+, -).

Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей соединенных по схеме приведенной ниже.

Каждая обмотка двигателя подсоединяется через соответствующий ключ к положительному и отрицательному полюсу звена постоянного тока.

Рис.13.6. Силовой трехфазный импульсный инвертор

Система управления осуществляет управление силовым инвертором.

С помощью ключевых схем можно осуществить преобразование постоянного напряжение в синусоидальное напряжение переменной частоты и амплитуды.

Непосредственно, приложить синусоидальное напряжение переменной частоты и амплитуды к обмоткам двигателя данная схема не позволяет, но она позволяет, используя Широтно-Импульсную Модуляцию (сокращенно ШИМ), импульсно прикладывать к обмоткам двигателя напряжение звена постоянного тока, таким образом, что эффект оказывается практически эквивалентен, приложению синусоидального напряжения, требуемой частоты и амплитуды.

в) Принцип работы широтно-импульсной модуляции

Идею автономного инвертора напряжения (АИН) проиллюстрируем на простейшей однофазной схеме с четырьмя идеальными ключами 1, 2, 3, 4 и активной нагрузкой R – (см.рис.13 7.)
При попарной коммутации ключей 1,2 – 3,4 – 1,2 и т.д. через время Т/2 (рис,б) к резистору будет прикладываться переменное напряжение uab прямоугольной формы с частотой . Ток при активной нагрузке будет повторять форму напряжения. Изменяя коммутационный промежуток Т/2, можно менять частоту в любых пределах.

Рис. 13.7. Однофазный инвертор, нагруженный активным сопротивлением (а),
и диаграмма работы (б)

Таким образом, постоянное напряжение на входе инвертора с помощью электронных переключателей мы превратили в прямоугольное напряжение различной полярности.

Однако, для нормальной работы регулируемого асинхронного привода необходимо синусоидальное напряжение, частоту которого можно изменять по заданной программе.

Можно ли сформировать последовательность прямоугольных импульсов, полученных путем включения и отключения электронных ключей, в синусоидальный сигнал?

Да, можно. Для этого используют широтно-импульсную модуляцию.

Последовательность прямоугольных импульсов характеризуется скважностью, то есть отношением длительности импульса к периоду его следования

Рис.13.8. Прямоугольные импульсы различной скважности

Из графиков видно, что чем больше скважность, тем больше переданная электрическая энергия. Если цепь с последовательностью импульсов через интегрирующую цепочку (RC или LC) подсоединить к вольтметру, то можно заметить, что напряжение на приборе тем выше, чем больше скважность импульсов. Так как период следования импульсов все время одинаков, то можно сказать, что напряжение на вольтметре прямо пропорционально ширине прямоугольного импульса

Рис.13.9. Зависимость величины напряжения на приборе от скважности импульсов.

Таким образом, если транзисторные ключи инвертора включать в определенной последовательности и открывать их на определенное время, то можно на выходе инвертора (см.рис. 13.6.) получить синусоидальный сигнал.

Широтно-импульная модуляция — это процесс формирования импульсов из постоянного напряжения, причем ширина импульсов изменяется по определенному закону.

Это означает, что ширина каждого импульса в последовательности будет определяться уровнем управляющего сигнала в данный момент времени. Таким управляющим сигналом обычно служит сигнал с системы управления асинхронным приводом.

Если такую последовательность импульсов напряжения по всем трем фазам послать на асинхронный двигатель, то ток в обмотках двигателя будет изменяться по синусоидальному закону. Изменяя период следования импульсов можно изменять частоту синусоидального сигнала и, следовательно, частоту вращения электропривода.

Дата добавления: 2018-05-12 ; просмотров: 1510 ; Мы поможем в написании вашей работы!

Измерение частоты переменного тока в сети: приборы и методы

Не так часто приходится узнавать именно частоту переменного тока, по сравнению с такими показателями, как напряжение и сила тока. Например, для того чтобы измерить силу тока можно воспользоваться измерительными клещами, для этого даже необязательно контактировать с токопроводящими частями, да и напряжение проверяет любой стрелочный или цифровой мультиметр. Однако, чтобы проверить частоту, с какой меняется полярность в цепях переменного тока, то есть количество его полных периодов, используется частотомер. В принципе, прибор с таким же названием может измерять и количество механических колебаний за определённый период времени, но в этой статье речь пойдёт исключительно об электрической величине. Далее мы расскажем, как проводится измерение частоты переменного тока мультиметром и частотомером.

Какие приборы можно использовать

Классификация частотомеров

Все данные приборы делятся на две основные группы по области их применения:

  1. Электроизмерительные. Применяются для бытового или же производственного измерения частоты в цепях переменного тока. Их используют при частотной регулировке оборотов асинхронных двигателей, так как вид частотного измерения оборотов, в этом случае, самый эффективный и распространённый.
  2. Радиоизмерительные. Нашли применение исключительно в радиотехнике и могут измерять широкий диапазон высокочастотного напряжения.

По конструкции частотомеры делятся на щитовые, стационарные и переносные. Естественно, переносные более компактные, универсальные и мобильные устройства, которые широко применяются радиолюбителями.

Для любого типа частотомера самыми важными характеристиками, на которые, в принципе, и должен обращать внимание человек при покупке, являются:

  • Диапазон частот, которые прибор сможет измерить. При планировании работы именно со стандартной промышленной величиной 50 Гц, нужно внимательно ознакомиться с инструкцией, так как не все приборы её смогут увидеть.
  • Рабочее напряжение в цепях, в которых будут проходить измерительные работы.
  • Чувствительность, эта величина более важна для радиочастотных устройств.
  • Погрешность, с которой он может производить замеры.

Мультиметр с функцией измерения частоты переменного тока

Самый распространенный прибор, с помощью которого можно узнать величину частотных колебаний и который находится в свободном широком доступе — это мультиметр. Нужно обращать своё внимание на его функциональные возможности, так как не каждый такой прибор сможет измерить частоту переменного тока в розетке или же другой электрической цепи.

Мультиметр

Такой тестер выполняется чаще всего очень компактным, для того чтобы в сумке он легко помещался, и был максимально функциональным, измеряющим помимо частоты также напряжение, ток, сопротивление, а иногда даже температуру воздуха, ёмкость и индуктивность. Современный вид мультиметра и его схема основаны чисто на цифровых электронных элементах, для более точного измерения. Состоит такой мультиметр из:

  • Жидкокристаллического информативного индикатора для отображения результатов измерения, расположенного, чаще всего, в верхней части конструкции.
  • Переключателя, в основном, он выполнен в виде механического элемента, позволяющего быстро перейти от измерения одних величин к другим. Нужно быть очень осторожным, так как, допустим, если измерять напряжение, а переключатель будет стоять на отметке «I», то есть сила тока, тогда следствием этого неминуемо будет короткое замыкание, которое приведёт не только к выходу со строя прибора, но может вызвать и термический ожог дугой рук и лица человека.
  • Гнезд для щупов. С их помощью непосредственно происходит электрическая связь прибора с измеряемым токопроводящим объектом. Провода не должны иметь потрескиваний и изломов изоляции, особенно это касается их наконечников, которые будут находиться в руках измеряющего.

Хотелось бы также упомянуть о специальных приставках к мультиметру, которые существуют и разработаны специально для того, чтобы увеличить число функций обычного прибора со стандартным набором.

Как выполняется измерение частоты

Перед тем как пользоваться мультиметром, а в частности, частотомером, внимательно нужно ознакомиться ещё раз с теми параметрами, которые он имеет возможность измерять. Для того чтобы правильно произвести их замер нужно освоить несколько этапов:

  1. Включить прибор соответствующей кнопкой на корпусе, чаще всего она выделена ярким цветом.
  2. Установить переключатель на измерение частоты переменного тока.
  3. Взяв в руки два щупа и подключив их, согласно инструкции в соответствующие гнёзда, произведём опробование измерительного устройства. Для начала нужно попробовать узнать частоту напряжения в стандартной сети 220 Вольт, она должна равняться 50 Гц (отклонение может быть в несколько десятых). Эта величина чётко контролируется поставщиком электрической энергии, так как при её изменении могут выйти из строя электроприборы. Поставщик отвечает за качество предоставляемой электроэнергии и строго соблюдает все её параметры. Кстати, такая величина является стандартной не во всех странах. Присоединив выводы частотомера к выводам розетки, на приборе высветится величина около 50 Гц. Если показатель будет отличаться, то это будет его погрешностью и при следующих измерениях это нужно будет обязательно учесть.

Далее, можно смело производить необходимые замеры, помня что частота есть только у переменного вида напряжения, постоянный ток не имеет изменяющегося периодически значения.

Другие альтернативные методы измерения

Самый эффективный и простой способ проверки частоты — это использование осциллографа. Именно осциллографом пользуются все профессиональные электронщики, так как на нём можно визуально увидеть не только цифры, но и саму диаграмму. При этом нужно обязательно отключить встроенный генератор. Новичку в электронике будет довольно проблематично выполнить данные измерения с помощью этого прибора. О том, как пользоваться осциллографом, мы рассказали в отдельной статье.

Осциллограф

Второй вариант — это измерение с помощью конденсаторного частотомера, имеющего диапазон измерений 10 Гц-1 МГц и погрешность около 2%. Он определяет среднее значение тока разрядки и зарядки, которое будет пропорционально частоте и измеряется косвенно с помощью магнитоэлектрического амперметра, со специальной шкалой.

Ещё один метод называется резонансный и основан он на явлении резонанса, возникающего в электрическом контуре. Тоже имеет шкалу с механизмом точной подстройки. Однако промышленную величину в 50 Гц этим способом невозможно проверить, работает он от 50 000 Гц.

Также вы должны знать, что существует реле частоты. Обычно на предприятиях, подстанциях, электростанциях — это основное устройство, которым контролируют изменение частоты. Данное реле воздействует на другие устройства защиты и автоматики для поддержания частоты на необходимом уровне. Есть разные типы реле частоты с разным функционалом, об этом мы расскажем в других публикациях.

Все же мультиметры и электронные цифровые частотомеры работают на обычном счёте импульсов, которые являются неотъемлемой частью, как импульсного так и другого переменного напряжения, необязательно синусоидального за определенный промежуток времени, обеспечивая при этом максимальную точность, а также широчайший диапазон.

Напоследок рекомендуем просмотреть полезное видео по теме:

Теперь вы знаете, как выполнить измерение частоты тока в сети мультиметром и частотомером. Надеемся, предоставленная информация была для вас полезной!
Будет интересно прочитать:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector