Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Исследование автоматической регулировки усиления

Исследование автоматической регулировки усиления

Системы автоматической регулировки усиления (АРУ) широко применяются в радиоприемных устройствах различного назначения, они предназначены для стабилизации уровня сигнала на выходе усилителей при большом динамическом диапазоне изменения входного сигнала, достигающим, например, в радиолокационных приемниках 60-100 дБ. При таком диапазоне изменения входного сигнала и отсутствии системы АРУ нарушается нормальная работа приемных устройств, что проявляется в перегрузке последующих каскадов приемника. В системах автоматического сопровождения цели РЛС

перегрузка каскадов приемника приводит к искажению амплптудной модуляции, к снижению коэффициентов усгяления, вплоть до срыва сопровождения. В системах стабилизации частоты большой динамический диапазон изменения сигнала вызывает изменение крутизны дискриминационной характеристики, что резко снижает качество работы системы.

Системы АРУ делятся на три основных типа [7]: 1) с обратной связью (с обратным действием); 2) без обратной связи (прямого действия); 3) комбинированные. Существуют одно- и многопетлевые системы АРУ с непрерывной и цифровой регулировкой.

«Функциональная схема системы АРУ с обратной связью показана на рис, 1.13.

Рис. 1.13. Функциональная схема АРУ

Рис. 1.14.. Схема регулируемого каскада

Входное напряжение поступает на усилитель (У) с регулируемым коэффициентом усиления. Выходное напряжение этого усилителя детектируется, после чего суммируется с напряжением задержки Суммарное напряжение усиливается усилителем постоянного тока (УПТ) и подается на фильтр нижних частот (ФПЧ). Напряжение с ФНЧ используется для регулировки коэффициента усиления входного сигнала. Зависимость коэффициента усиления усилителя входного сигнала от управляющего напряжения называют регулировочной характеристикой. В общем случае эта характеристика нелинейная, однако приближенно она может быть заменена линейной зависимостью вида

где коэффициент усиления при управляющем напряжении, равном нулю; а — крутизна регулировочной характеристики,

Изменение коэффициента усиления может быть достигнуто различными способами: путем включения управ-? ляемого аттенюатора, изменением крутизны характеристик электронных приборов и др. [7]. В качестве примера на рис. 1.14 показана схема усилителя с регулируемым коэффициентом усиления, в котором управляющее напряжение подается на базу транзистора VT. При увеличении управляющего напряжения напряжение на базе повышается, в результате чего коэффициент усиления каскада уменьшается.

Эффект стабилизации уровня выходного напряжения достигается за счет того, что с ростом урбйня увеличивается и управляющее напряжение под действием которого в соответствии с выражением (1.22) уменьшается коэффициент усиления усилителя входного сигнала, что приводит к снижению уровня выходного сигнала.

Для того чтобы не снижать усиление при слабых входных сигналах и начать управление коэффициентом усиления усилителя только при достижении входным сигналом определенного уровня в систему АРУ подают напряжение задержки . В результате напряжение управления появится только в том случае, когда напряжение с амплитудного детектора превысит напряжение задержки.

ФНЧ в цепи обратной связи системы АРУ предназначен для передачи управляющего напряжения с частотами изменения уровня выходного напряжения АРУ. При этом ФНЧ не должен пропускать колебания упрайляющего напряжения с частотами спектра полезной модуляции сигнала в противном случае происходит демодуляция входного сигнала, ослабляющая выходной сигнал.

Непосредственно из схемы рис. 1.13 следует, что напряжение на выходе УПТ

где — коэффициент передачи детектора.

Управляющее напряжение на выходе ФНЧ находят из следующего дифференциального уравнения:

Напряжение на выходе системы АРУ

Уравнениям (1.23) — (1.25) соответствует структурная схема системы изображенная на рис. 1.15. В этой схеме нелинейное звено описывается зависимостью

Рис. 1.15. Структурная схема системы АРУ

Отличительной особенностью системы АРУ по сравнению с системами РА, рассмотренными в предыдущих параграфах, является зависимость коэффициента передачи системы от времени, что происходит из-за наличия в системе (рис. 1.15) звена с коэффициентом передачи Кроме того, из-за нелинейного звена с характеристикой (1.26) система АРУ является нелинейной. Анализ нелинейных систем с переменными параметрами является сложной задачей.

Рис. 1.16. Регулировочные характеристики системы АРУ

В установившемся режиме при постоянном уровне напряжения на входе системы АРУ из уравнений (1.23) — (1.26) следуют следующие соотношения:

где коэффициент усиления УПТ.

Уравнение (1.27) определяет регулировочную

характеристику системы АРУ с обратной связью (кривая 2 на рис. 1.16), на этом же рисунке изображена характеристика без АРУ (кривая 1) и регулировочная характеристика с идеальной системой АРУ (кривая 3).

Читайте так же:
Куплю планку для регулировки клапанов

Быстродействующая АРУ (БАРУ) или мгновенная АРУ (МАРУ)

Наиболее эффективным методом защиты от перегрузки приемника импульсной помехой является так называемая мгновенная автоматическая регулировка усиления (МАРУ). Схема МАРУ отличается от обычной схемы АРУ тем, что скорость действия МАРУ значительно больше, поэтому она реагирует на каждый поступающий импульс.

В приемниках РЛС часто применяется система мгновенной регулировки усиления (МАРУ). Она в основном предназначена для борьбы с импульсными помехами, имеющими большую амплитуду. Такие помехи появляются вследствие отражений от холмов, плотной облачности, от поверхности воды (если РЛС установлена на самолете).

Такая помеха, воздействуя на приемник без системы МАРУ, вызывает перегрузку ряда его каскадов, вследствие чего наступает резкое уменьшение чувствительности приемника. Результатом этого может быть пропуск полезных сигналов. Система МАРУ в ряде случаем защищает ПРМ от длительной перегрузки. Ее основной особенностью является малая инерционность. Система МАРУ почти мгновенно срабатывают под воздействием помехи, уменьшая на время ее действия коэффициент усиления нескольких каскадов УПЧ. Сразу после исчезновения помехи чувствительность приемника полностью восстанавливается, и он может принимать слабые сигналы.

Схема МАРУ позволяет отделить полезный сигнал от помехи и в том случае, когда они действуют на входе приемника одновременно. Допустим, что частота немодулированной помехи равна частоте полезного сигнала и оба колебания воздействуют на вход приемника синфазно. Результирующий сигнал для такого случая изображено на рис. 2.228,г. Если амплитуда помехи достаточно велика, а напряжение смещения постоянно (нет системы МАРУ), то полезный сигнал не будет выделен (рис. 2.232,а). Если же в данном каскаде имеется система МАРУ, то на время действия помехи отрицательное смещение возрастает, и полезный сигнал будет выделен (рис. 2.232, б).

Рисунок – Функциональная схема быстродействующей АРУ (БАРУ)

При других фазовых соотношениях помехи и сигнала, а также при несовпадении их частот результат будет аналогичный.

Шумовая АРУ (ШАРУ)

Схема шумовой автоматической регулировки усиления (ШАРУ) предназначена для поддержания неизменным среднего уровня шумового напряжения на выходе приемного устройства при значительном изменении интенсивности активной шумовой помехи (АШП) на его входе.

ШАРУ является разновидностью инерционной автоматической регулировки усиления непрерывного действия. Особенность ее со­стоит в том, что входным возмущением цепи ШАРУ является не сигнал, а шум. Поэтому в цепь ШАРУ включается селектор (детектор) шума, обеспечивающий подачу на ее вход выборки шума. В частности, таким селектором может служить стробируемый каскад, открываемый в момент отсутствия сигналов.

Рисунок – Осциллограмма шумового напряжения

Схема ШАРУ представляет собой систему автоматического регулирования коэффициента усиления УПЧ. Продетектированный (детектором ШАРУ) выходной шум УПЧ сглаживается узкополосным фильтром, благодаря чему на выходе фильтра выделяется напряжение, пропорциональное среднему уровню шума. Это напряжение усиливается в УПТ и подается на первые 2. 3 каскада УПЧ для регулировки их коэффициента усиления. Чем больше уровень помехи на выходе УПЧ, тем больше величина регулируемого напряжения на выходе схемы ШАРУ и тем меньше коэффициент усиления УПЧ. Быстродействие, однако, не должно быть очень высоким, чтобы схема не срабатывала по полезному сигналу и не ухудшала отношение сигнал-помеха. Чтобы не снижать усиление сигналов при отсутствии помех, схема ШАРУ должна вырабатывать регулирующее напряжение лишь при воздействии на ее вход шумовых сигналов, превышающих номинальный уровень. Это обеспечивается с помощью порогового устройства (устройства отсечки). Средний уровень шумового напряжения на выходе приемного устройства определяет величину напряжения срабатывания порогового устройства при заданной вероятности ложной тревоги F.

Схема ШАРУ, постоянную времени которой выбирают равной tшару =(10. 20)×tи, не реагирует на полезные сигналы и отдельные выбросы помехи, благодаря чему обеспечивается линейная обработка сигналов (полезные сигналы не ограничиваются, структура помехи в установившемся режиме не изменяется). Но вследствие инерционности схемы ШАРУ изменение коэффициента усиления приемника происходит с некоторым запаздыванием относительно моментов изменения интенсивности помехи на входе приемника. В результате, если например, уровень помехи на входе быстро возрастает, то вследствие того, что коэффициент усиления приемника еще в течение некоторого времени (tшару) будет оставаться прежним, возрастает уровень помехи и на выходе приемника. На экране индикатора появляется кратковременныйзасвет (передняя кромка помехи). Если же, наоборот, уровень помехи на входе резко уменьшится, то на экране появится темное пятно. Приемник с ЛАХ на изменения интенсивности помехи реагирует практически мгновенно и указанных явлений на экране индикатора наблюдаться не будет. Однако он реагирует и на отдельные выбросы помехи, из-за чего обработка сигналов становится нелинейной (структура помехи нарушается, сигнал частично ограничивается).

Читайте так же:
Регулировка дискового тормоза на мопеде

ВЫВОДЫ

1. Усилитель с АРУ предназначен для поддержания стабильного по выбранному критерию выходного напряжения относительно меняющегося входного.

2. Работа системы с АРУ основана на управлении его коэффициентом усиления.

3. Системы сАРУ позволяют поддерживать как неизменный уровень сигнала, так и поддерживать амплитудные отличия между сигналами.

4. В зависимости от условий работы ПРМ применяется тот или иной вид АРУ.

5. В зависимости от способа подачи регулируемого напряжения АРУ подразделяют на обратные, прямые и комбинированные.

Системы автоматики: системы автоматического контроля, управления и регулирования

Системы автоматики: системы автоматического контроля, управления и регулированияВсе элементы автоматики по характеру и объему выполняемых операций подразделяют на системы: автоматического контроля, автоматического управления, автоматического регулирования.

Система автоматического контроля (рис. 1) предназначена для контроля за ходом какого-либо процесса. Такая система включает датчик В, усилитель А, принимающий сигнал от датчика и передающий его после усиления на специальный элемент Р, который реализует заключительную операцию автоматического контроля — представление контролируемой величины в форме, удобной для наблюдения или регистрации.

В частном случае в качестве исполнительного элемента Р могут служить сигнальные лампы или звуковые сигнализаторы. Систему с такими элементами называют системой сигнализации .

Система автоматического контроля

Рис. 1. Система автоматического контроля

В систему автоматического контроля кроме указанных на рис. 1, а могут входить и другие элементы — стабилизаторы, источники питания, распределители (при наличии нескольких точек контроля или нескольких датчиков в одном исполнительном элементе Р) и т. д.

Независимо от количества элементов системы автоматического контроля являются разомкнутыми и сигнал в них проходит только в одном направлении — от объекта контроля Е к исполнительному элементу Р.

Система автоматического управления предназначена для частичного или полного (без участия человека) управления объектом либо технологическим процессом. Эти системы широко применяют для автоматизации, например, процессов пуска, регулирования частоты вращения и реверсирования электродвигателей в электроприводах всех назначений.

Необходимо указать на такую важную разновидность систем автоматического управления, как системы автоматической защиты , которые не допускают аварийного или предельного режима, прерывая в критический момент контролируемый процесс.

Система автоматики

Система автоматического регулирования поддерживает регулируемую величину в заданных пределах. Это наиболее сложные системы автоматики, объединяющие функции автоматического контроля и управления. Составная часть этих систем — регулятор .

Если системы выполняют только одну задачу — поддерживают постоянной регулируемую величину, их называют системами автоматической стабилизации. Однако существуют такие процессы, для которых необходимо изменять во времени регулируемую величину по определенному закону, обеспечивая ее стабильность на отдельных участках. В этом случае автоматическую систему называют системой программного регулирования .

Для обеспечения постоянства регулируемой величины можно использовать один из принципов регулирования — по отклонению, возмущению или комбинированный, которые будут рассмотрены применительно к системам регулирования напряжения генераторов постоянного тока.

При регулировании по отклонению (рис. 2 и 3) элемент сравнения UN сравнивает фактическое напряжение U ф с заданным Uз, определяемым задающим элементом EN. После сравнения на выходе элемента UN появляется сигнал Δ U=Uз — U ф, пропорциональный отклонению напряжения от заданного. Этот сигнал усиливается усилителем А и поступает на рабочий орган L. Изменение напряжения на рабочем органе L, которым является обмотка возбуждения генератора G, приводит к изменению фактического напряжения генератора, устраняющего его отклонение от заданного.

Усилитель А, не изменяющий принципа действия системы, необходим для ее практической реализации, когда мощность сигнала, поступающего от элемента сравнения UN, недостаточна для воздействия на рабочий орган L.

Система автоматического регулирования

Рис. 2. Система автоматического регулирования

Автоматическое регулирование по отклонению

Рис. 3. Автоматическое регулирование по отклонению

Наряду с задающим воздействием на систему могут влиять различные дестабилизирующие факторы Q, которые вызывают отклонение регулируемой величины от заданной. Воздействия дестабилизирующих факторов, один из которых условно обозначен на рисунке буквой Q, могут проявляться в различных местах системы и, как принято говорить, поступать по различным каналам. Так, например, изменение температуры окружающей среды приводит к изменению сопротивления в цепи обмотки возбуждения, что в свою очередь влияет на напряжение генератора.

Читайте так же:
Регулировка оборотов на токарном станке

Однако где бы ни возникали воздействия Q (со стороны потребителя — ток нагрузки, вследствие изменения параметров цепи возбуждения), система регулирования будет реагировать на вызванное ими отклонение регулируемой величины от заданной.

Пульт управления автоматической системы

Наряду с рассмотренным принципом регулирования используют регулирование по возмущению , при котором в системе предусматривают специальные элементы, измеряющие воздействия Q и влияющие на рабочий орган.

В системе, использующей только такой принцип регулирования (рис. 4 и 5), фактическое значение регулируемой величины не учитывается. Принимают во внимание только одно возмущающее воздействие — ток нагрузки I н. В соответствии с изменением тока нагрузки происходит изменение магнитодвижущей силы (мдс) обмотки возбуждения L2, являющейся измерительным элементом данной системы. Изменение мдс этой обмотки приводит к соответствующему изменению напряжения на выводах генератора.

Автоматическое регулирование по возмущению

Рис. 4. Автоматическое регулирование по возмущению

Принципиальная схема системы автоматики

Рис. 5. Принципиальная схема системы автоматики

Система, осуществляющая комбинированное регулирование (по отклонению и возмущению), может быть получена объединением ранее рассмотренных систем в одну (рис. 6)

Система автоматики комбинированного регулирования

Рис. 6. Система автоматики комбинированного регулирования

В системе автоматического регулирования задающий элемент представлял собой эталон напряжения, с которым сравнивалась регулируемая величина U ф. Значение U p принято называть уставкой регулятора. В общем случае регулируемую величину обозначают буквой Y , а ее уставку Yo .

Если уставку Yo в заданных пределах оператор изменяет вручную, а регулируемой величиной является Y , система работает в режиме стабилизации. Если уставка регулятора изменяется произвольно во времени, система автоматики, поддерживая значение Δ Y = Yo — Y = 0, будет работать в следящем режиме, т. е. следить за изменением Yo .

И наконец, если уставку Yo изменять не произвольно, а по заранее известному закону (программе), система будет работать в режиме программного управления. Такие системы называют системами программного регулирования .

не имеет замкнутой цепи воздействия по регулируемой величине, поэтому ее называют разомкнутой.

Системы автоматики по принципу действия подразделяют на статические и астатические. В статических системах регулируемая величина не имеет строго постоянного значения и с увеличением нагрузки изменяется на некоторую величину, называемую ошибкой регулирования.

Рассмотренные системы (рис. 1 — 6) являются примерами простейших статических систем. Наличие ошибки регулирования в них обусловлено тем, что для обеспечения большего тока возбуждения необходимо большее отклонение напряжения.

Внешние характеристики систем автоматики: а - статической, б - астатисческой

Рис. 7. Внешние характеристики систем автоматики: а — статической, б — астатисческой

Зависимость напряжения генератора от тока нагрузки в виде прямой наклонной линии показана на рис. 7, а. Наибольшее относительное отклонение напряжения от заданного называют статизмом системы по напряжению: Δ = = (Um a x — Umin)/Um a x, где (Um a x, Umin — напряжения генератора на холостом ходу и под нагрузкой. Обобщая сделанное заключение для любой статической системы, можно записать: Δ = ( Y m a x — Y min)/ Y m a x, где Y — регулируемая величина.

Иногда статизм определяют по другой формуле: Δ = ( Y m a x — Y min)/ Y ср, причем Y ср = 0,5( Y m a x + Y min) — среднерегулируемая величина Y . Статизм называют положительным, если с ростом нагрузки значение Y уменьшается, и отрицательным, если значение Y увеличивается.

В астатических системах статизм равен нулю и поэтому зависимость регулируемой величины от нагрузки представляет собой линию, параллельную оси нагрузки (рис. 7,6).

Рассмотрим, например, астатическую систему автоматики (см. рис. 8), в которой напряжение генератора регулируется изменением сопротивления реостата R , включенного в цепь обмотки возбуждения L.

Астатическая система автоматики

Рис. 8. Астатическая система автоматики

Серводвигатель М начинает вращаться и перемещать ползунок реостата R всякий раз, когда на входе усилителя А появляется сигнал Δ16; U об отклонении напряжения генератора U ср от заданного значения U p . Ползунок реостата перемещается до тех пор, пока сигнал об отклонении не станет равным нулю. Такая система отличается от другой системы тем, что для поддержания нового значения тока возбуждения не требуется сигнала на выходе усилителя А. Это отличие и позволяет избавиться от статизма.

Читайте так же:
Проверка и регулировка форсунок системы питания дизельных двигателей

Во всех ранее приведенных примерах предполагалось, что воздействие на рабочий орган производилось непрерывно в течение всего промежутка времени, пока существует отклонение регулируемой величины от заданной. Такое управление называется непрерывным , а системы — системами непрерывного действия .

Однако существуют системы, называемые дискретными, в которых воздействие на рабочий орган осуществляется с перерывами, например система регулирования температуры подошвы утюга, в которой регулирующее воздействие может принимать только одно из двух фиксированных значений при непрерывном изменении регулируемой величины — температуры.

В этой системе регулирование температуры осуществляется включением и отключением нагревательного элемента R по сигналу датчика температуры (смотрите — Базовые элементы автоматики). При увеличении температуры сверх уставки датчик размыкает свой контакт и отключает нагревательный элемент. При снижении температуры ниже уставки нагревательные элементы включаются. Эта система не имеет устойчивого промежуточного состояния рабочего органа, а он занимает лишь два положения — включено в сторону «больше» или включено в сторону «меньше».

Объект регулирования в системе автоматики

Для обеспечения необходимого качества процесса регулирования в системе могут быть предусмотрены специальные устройства, называемые обратными связями . Эти устройства отличаются от других тем, что сигнал в них имеет направление, обратное основному управляющему сигналу.

Для примера на рис. 8 изображена обратная связь Е по отклонению регулируемой величины Δ U , соединяющая выход усилителя А со входом элемента сравнения UN. При положительной обратной связи Е на выходе элемента сравнения UN получается сумма величин Δ U и Z, а при отрицательной — их разность.

Структурная схема системы телемеханики

Рис. 9. Структурная схема системы телемеханики

Рассмотренные системы автоматики предполагают непосредственную связь всех входящих в них элементов. Если элементы системы автоматики расположены на значительном удалении друг от друга, для их соединения используют передатчики, каналы связи и приемники. Такие системы называют телемеханическими .

Телемеханическая система состоит из пункта управления, где находится оператор, управляющий работой системы, одного или нескольких контролируемых пунктов, на которых расположены объекты контроля A 1 — An, линий связи L1A — LnA (каналы передачи данных), соединяющих пункт управления Е1М с контролируемыми пунктами Е2А — Еn (рис. 9). В телемеханической системе по линиям связи можно передавать как все, так и некоторые виды контрольной и управляющей информации.

При передаче информации только о параметрах ОК телемеханическую систему называют с истемой телеизмерения , в которой сигналы с выходов датчиков (измерительных преобразователей, установленных на ОК) передаются на пункт управления Е1М и воспроизводятся в виде показаний стрелочных или цифровых измерительных приборов. Информация может передаваться как непрерывно, так и периодически, в том числе и по команде оператора.

Если на пункт управления передается только информация о состоянии, в котором находится тот или иной объект контроля («включен», «выключен», «исправен», «неисправен»), такую систему называют системой телесигнализации .

Телесигнализация, как и телеизмерение, выдает оператору исходные данные для принятия решения по управлению ОК или служит для выработки управляющих воздействий в системах телеуправления и телерегулировки. Основное отличие этих систем от предыдущих заключается в том, что в первой из них используются дискретные сигналы типа «включить», «выключить», а во второй — непрерывные, подобно обычным системам регулирования.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Автоматическая регулировка усиления

Автоматическая регулировка усиления, АРУ (англ. automatic gain control , AGC ) — процесс, при котором выходной сигнал некоторого устройства, как правило электронного усилителя, автоматически поддерживается постоянным по некоторому параметру (например, амплитуде простого сигнала или мощности сложного сигнала), независимо от амплитуды (мощности) входного сигнала. В аппаратуре, использующейся для прослушивания радиовещательного эфира, АРУ также называют устарелым термином автоматическая регулировка громкости (АРГ), а в приёмниках проводной связи — автоматической регулировкой уровня. В импульсных приёмниках (радиолокационных и других) применяют АРУ, учитывающие особенности работы в импульсном режиме.

АРУ применяется для исключения перегрузки выходных каскадов приёмников при больших входных сигналах. Используется в бытовой аппаратуре, в приёмниках спутников связи и т. д. Также, существует ручная регулировка усиления (РРУ), выполняется на пассивных или активных (электронных) радиоэлементах или с помощью аттенюаторов. [1]

Читайте так же:
Регулировка термоклапана автоматики арбат

В 1925 Гарольд Олден Уилер изобрел автоматическую регулировку громкости (АРГ) и получил патент. Карл Кюпфмюллер [en] издал анализ систем АРУ в 1928. [2] К началу 1930-х все бытовые радиоприемники включали автоматическую регулировку громкости. [3]

Существует три типа АРУ: простая, усиленно-задержанная и просто задержанная. Или по типу сигнала схемы АРУ бывают двух типов:

Также, если искажения сигнала не важны, применяют схему ограничителя.

Напряжение сигналов, поступающих на вход приёмника, как правило значительно меняется: из-за различия передаваемой мощности передатчиков и расстояний их от места приёма, замираний сигналов при распространении, резкого изменения расстояний и условий приёма между передатчиком и приёмником, установленными на движущихся объектах (самолётах, автомобилях и т. д.), и других причин. Это приводит к недопустимым колебаниям или искажениям сигналов в приёмнике. Система АРУ стремится минимизировать различия напряжения выходного и входного сигнала приёмника. Это осуществляется посредством цепей, которые передают выпрямленное детектором регулирующее напряжение на базы транзисторов, усилителей высокой, промежуточной частоты и преобразователя частоты, которые уменьшают их усиление с увеличением напряжения сигнала на входе и наоборот: происходит компенсация в приёмнике изменений напряжения входных сигналов. Основные параметры систем АРУ:

  • Динамический диапазон (дБ) — это глубина изменения входного сигнала (разница между минимальным и максимальным сигналом), при котором ещё выходной сигнал находится в допустимых пределах;
  • Время срабатывания АРУ (дБ/с) — отражает скорость реакции АРУ на скачок входного сигнала. Данный параметр равен бесконечности (нулевое время срабатывания) для ограничителя сигнала.

Важным свойством системы АРУ является наличие выхода, показывающего уровень входного сигнала (невозможно сделать для ограничителя).

Обратная

Эта схема получила такое название, из-за того, что управляющее напряжение (Uупр) подается со стороны выхода в направлении входа РУ. Пропорционально уровню входного сигнала обеспечивается управляющее напряжение, благодаря коэффициенту передачи КД детектора АРУ (ДЕТ): Uупр = КД ⋅ Купр ⋅ Uвых. Фильтр АРУ (ФНЧ) отфильтровывает составляющие частот модуляции и пропускает медленно меняющиеся составляющие напряжения Uупр. Цепь АРУ называется простой, если она состоит только из детектора и фильтра. В цепь АРУ может включаться усилитель, устанавливаемый после детектора (УПТ).

Прямая

Входное напряжение Uвх детектируется, и за счёт этого формируется управляющее напряжение Uупр. Выходное напряжение получается путём умножения Uвх на коэффициент усиления Ko. Таким образом, при увеличении Uвх уменьшается Ko; при этом их произведение может оставаться постоянным, что позволяет реализовать идеальную характеристику АРУ, но практически добиться этого не удается. Прямая схема АРУ имеет некоторые существенные недостатки, один из которых состоит в необходимости включать перед детектором в цепи АРУ дополнительный высокочастотный (ВЧ) усилитель с большим коэффициентом усиления, прямая АРУ также нестабильна, то есть подвержена воздействию различных дестабилизирующих факторов. В связи с этим она нашла ограниченное применение.

Пассивная

Пассивные АРУ-устройства, не потребляющие электрическую энергию, то есть не имеющие в своём составе источников тока. Как правило, такие пассивные АРУ выполняются в виде аттенюаторов, каждый из резисторов которого представляет собой термосопротивление (термисторы). С повышением температуры сопротивление увеличивается, что вызывает уменьшение вносимого ослабления аттенюатором. И, наоборот, при понижении температуры окружающей среды ослабление аттенюатора увеличивается.

АРУЗавтоматическая регулировка уровня записи в устройствах магнитной звукозаписи.

В общем случае АРУЗ выравнивает амплитуду звукового сигнала для записи равномерного и качественного звука.

Автоматическая регулировка уровня записи применяется в съемочной технике и других устройствах магнитной звукозаписи, используемой в видеопроизводстве для предотвращения проблем ручной регулировки уровня записи звука. При ручной регулировке уровня записи звука необходимо постоянно следить за индикатором звука и устанавливать приемлемый уровень записи звука согласно уровню принимаемого звукового сигнала. Это отвлекает от работы с визуальным содержанием кадра. При этом даже при постоянном слежении за индикатором записи звука избежать кратковременных перегрузов или, наоборот, потери звуковой информации не удаётся. Ручное регулирование уровня записи трубет временных затрат, что негативно сказывается на результатах работы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector