Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простая схема регулируемого трансформаторного блока питания на транзисторах с защитой от перегрузки и КЗ

Простая схема регулируемого трансформаторного блока питания на транзисторах с защитой от перегрузки и КЗ.

В этой статье предлагаю рассмотреть достаточно простую схему, классический вариант, блока питания с регулировкой выходного напряжения и тока срабатывания защиты от токовой перегрузки и короткого замыкания. Новичкам, которые первый раз видят данную схему наверняка будет не совсем понятен сам принцип действия и работа этого устройства. А что касается надежности этой схемы, то она уже проверена многими годами и многими радиолюбителями, электронщиками, которые в свое время обязательно должны были собирать этот регулируемый блок питания для своих различных электронных устройств. Так что схема проста, работоспособна и вполне надежна.

схема регулируемого блока питания на транзисторах с защитой от перегрузки по току и КЗ

Давайте разберем эту схему. Вначале стоит обычный трансформаторный блок питания подходящей мощности. Поскольку в самой схеме регулятора напряжения стоит силовой транзистор КТ817, который может через свой переход коллектор-эмиттер пропустить до 3х ампер, то этим током пока и ограничимся. Итак, наш регулируемый блок питания будет выдавать на своем выходе постоянное напряжение от 0 до 12 вольт, с максимальной силой тока до 3 А. Следовательно максимальная рабочая мощность блока питания будет около 36 Вт (мы 12 В умножаем на 3 А). Поскольку трансформаторы такой мощности имеют КПД примерно равный 80%, то этот трансформатор у нас должен быть мощностью где-то 50 Вт.

какой трансформатор лучше поставить на самодельный регулируемый блок питанияЧтобы мы на выходе данного блока питания получили свои максимальные 12 вольт, то нужно чтобы наш трансформатор на вторичной обмотке выдавал переменное напряжение не менее 13,5 вольт. Почему так. Просто небольшая часть напряжения, а именно где-то 1,2 вольта потеряется на схеме стабилизатора напряжения. Ну об этом чуть позже. В итоге, нужно найти трансформатор мощностью около 45-60 Вт, вторичная обмотка которого может обеспечить ток до 3 ампер и напряжение 13,5-15 вольт. Ну, и желательно чтобы размеры этого трансформатора были подходящими, компактными, а это значит что лучше приобретать тор (круглая форма магнитного сердечника). В таких трансформаторах и размеры меньше и КПД выше. На входе первичной обмотке желательно предусмотреть плавкий предохранитель (на схеме обозначен как Z1), который в случае чего обезопасит схему блока питания от выгорания трансформатора.

какой диодный мост выпрямитель поставить на регулируемый блок питания

Далее пониженное переменное напряжение, что выходит со вторичной обмотки трансформатора, поступает на диодный выпрямительный мост. Задача моста проста, сделать из переменного тока постоянный, то есть его выпрямить. На схеме я указал, что эти диоды в мосте D1 должны быть типа 1n4007, но изначально схема была нарисована на выходной тока до 1ого ампера. Именно этот ток (до 1 А) могут обеспечить данный тип диода. Поскольку мы уже делаем блок питания на 3 ампера, то либо нужен соответствующий диодный мост типа BR310 (можно и даже нужно делать запас по току и брать мосты ампер так на 5 или 6) либо же соединить параллельно 3 или 4 моста с диодами 1n4007. Обратное напряжение диодов моста должно быть, естественно, больше, чем напряжение, что на них подается.

какой конденсатор поставить на диодный мост в блоке питания с защитой по токуНо как известно после диодного моста выходит пульсирующее напряжение, хотя оно уже и не меняет свою полярность. Чтобы эти пульсации убрать, или по крайней мере их свести к минимуму, то обычно для этого ставиться обычный фильтрующий конденсатор электролит. В схеме он обозначен как C1 и его емкость 500 микрофарад, хотя можно поставить и побольше, микрофарад так на 5000, будет только лучше. Учтите, что напряжение конденсаторов должно быть чуть больше того, которое на них подается в схеме при работе. Поскольку в противном случае возникает опасность выхода из строя данного конденсатора. Даже может бабахнуть.

Далее в регулируемом блоке питания, с защитой по току от КЗ и перегрузок, стоит сама схема, которая выполняет функцию регулируемого стабилизатора напряжения, и токовой защиты. В начале этой схемы стоит обычный параметрический стабилизатор напряжения, состоящий из стабилитрона VD1 и резистора R1.

Схема параметрического стабилизатора напряжения на стабилитроне для блока питания

На стабилитроне оседает опорное напряжение, то на какое рассчитан сам стабилитрон. В этой схеме нужен стабилитрон с напряжением стабилизации 13,5 вольт (14 В). Причем стоит заметить, выходное напряжение будет равно напряжению стабилитрона плюс 1,2 вольта, что потеряются на составном транзисторе, состоящем из VT1 и VT2 (на их база-эмиттерном переходе).

Напряжение питание должно быть больше хотя бы на 0,5-2 вольта, чем напряжение стабилитрона. Именно эта добавленное напряжение и нужно для нормальной, стабильной работы стабилитрона (параметрического стабилизатора). Сам стабилитрон можно поставить например Д814Д, либо поставить несколько параллельно соединенных стабилитронов и диодов, общее напряжение стабилизации чтобы было равно 14 вольтам.

падение напряжения на составном транзисторе в блоке питанияПараллельно стабилитрону подключен переменный резистор R2. Именно им осуществляется регулировка величины выходного напряжения. Со среднего вывода этого резистора, относительно минуса, напряжение снимается и подается на базу первого транзистора VT1 (составного). Этот составной транзистор состоит из VT1 и VT2 и включен по схеме с общим коллектором (эмиттерный повторитель). А как известно, при таком подключении транзисторов усиление происходит только по току, напряжение же остается практически неизменным, и даже чуть меньше. И получается, что какое напряжение будет выставлено на переменном резисторе, то такое напряжение (с вычетом 1,2 В) и будет на выходе регулируемого блока питания. Но при этом через составной транзистор будет проходит максимально возможный ток, ограничивается только величиной нагрузки и максимально допустимым током самих силовых транзисторов (напомню, что КТ817 может выдерживать до 3 ампера). Этот транзистор следует установить на радиатор для лучшего охлаждения.

Читайте так же:
Партнер 3816 регулировка карбюратора

Ну и теперь что касается функции защиты по току от короткого замыкания и чрезмерной перегрузки. Как видно на схеме коллектор-эмиттерный переход транзистора VT3 подключен параллельно выводам переменного резистора, с которых снимается регулируемое напряжение. Следовательно, если этот транзистор защиты по току будет открываться, то тем самым он будет способствовать снижению выходного напряжения. А это, естественно, приведет и к снижению величины силы тока в нагрузке. Ну, а чтобы транзистор защиты начал открываться, нужно появление напряжения на его база-эмиттерном переходе, который подключен к еще одному переменному резистору R3. Именно этим резистором можно регулировать силу тока перегрузки и КЗ. Этот переменный резистор подключен к еще одному резистору R4, который и выполняет роль датчика величины тока в цепи нагрузки.

аналогия электрических сопротивлений в узле защиты по току в блоке питанияРабота этого датчика тока проста. На рисунке под схемой (в нижнем, правом углу) можно увидеть три последовательно соединенных резистора, что соответствует сопротивлениям силового транзистора (коллектор-эмиттерный переход), сопротивления самой нагрузки и сопротивления резистора R4. Если мы увеличим нагрузку, уменьшив ее сопротивления, то напряжение будет перераспределяется между другими сопротивлениями в этой цепи. Следовательно на резисторе R4 при перегрузке или коротком замыкании увеличится напряжение, что и приведет к открытию защитный транзистор VT3. Сопротивления датчика тока R4 можно подбирать под нужный диапазон тока перегрузки и его величина может быть от 0,1 до 10 Ом. При этом мощность этого сопротивления должна быть не менее 1 Ватта.

Ну и на выходе нашего блока питания стоит еще один конденсатор электролит, который еще лучше фильтрует возможные пульсации, делая выходное постоянное напряжении более стабильным и ровным. Его емкость может быть от 500 мкф до 2200 мкф и напряжением 16 или 25 вольт.

Схемы простых мощных зарядных устройств для аккумуляторов.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В) .
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.

Зарядное устройство на гасящих конденсаторах

Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Читайте так же:
Регулировка фар при сломанном корректоре

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.

Зарядное устройство на тиристоре

Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI. VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1. VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24. 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.

Зарядное устройство на симисторе

Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.

Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

Читайте так же:
Регулируем сцепление на т 130

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Зарядное устройство на полевом транзисторе

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16. 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Зарядное устройство на полевом транзисторе

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.

В результате длительной или неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, что приводит к их деградации и последующему выходу из строя. Известен способ восстановления таких батарей методом заряда их «ассиметричным» током. При этом соотношение зарядного и разрядного тока выбирается 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

Зарядное устройство и восстановление аккумулятора

На Рис.8 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

Переделка блока питания в зарядное устройство — пошаговая инструкция

Делая «апгрейд» компьютера, старый блок питания заменяют новым, чтобы тянул повышенные нагрузки. При этом БП рабочий, но как его использовать – неясно, и он пылится на полке. Один из вариантов – сделать зарядное устройство для аккумулятора 12В. Переделка своими руками для опытного автовладельца сложной не будет, но делать ее – под личную ответственность.

Переделка блока питания в зарядное устройство

Из старого блока питания можно сделать зарядное устройство для аккумулятора 12 В.

Схема ЗУ из блока питания

Это схема импульсного БП ATX-типа. При внимательном рассмотрении станет понятно, что это, по сути, готовая зарядка. Конечно, придется кое-что убрать, где-то добавить цепь, чтобы устройство было с регулировкой тока. Это важно, если в планах сделать зарядное устройство для авто, точнее для АКБ.

Схема ЗУ из БП

Схема ЗУ из БП.

Что надо удалить:

  • схемы выключения и защиты;
  • выпрямители и фильтры (за исключением канала +12 В).

Источник дежурного напряжения питает микросхему ШИМ, поэтому его оставляют. Зарядка аккумулятора, устанавливаемого в автомобиль, выполняется в режиме стабилизации напряжения и тока, а значит, нужны цепи, позволяющие задавать параметры.

Что понадобится для переделки

Делая зарядное устройство из компьютерного блока питания, используют такие детали:

  • два потенциометра, чтобы регулировать электропараметры (если стабилизация не нужна, достаточно одного);
  • выводные (true hole) резисторы 0.25 Вт в количестве нескольких штук;
  • пару клемм для соединения кабелей;
  • провода.
Читайте так же:
Д 245 регулировка холостого хода

В дополнение – приборы вольтметр и амперметр. Ими определяются выходные параметры.

Пошаговая инструкция для сборки

Источники питания свинцового типа, устанавливаемые в авто, заряжаются при постоянном напряжении и с постепенным снижением тока. Поэтому идея соорудить зарядное устройство из блока питания компьютера имеет место.

Рабочая авто АКБ энергоемкостью 60 Ач заряжается токами 3 – 6 А, глубоко «посаженная» – до 10 А (со стабильным напряжением порядка 14 В). Такую силу тока способен выдать даже простой блок питания мощностью более 250 Вт.

БП типа ATX собраны по разным схемам, но наиболее распространены микросхемы-формирователи ШИМ TL494. При желании, в сети находится немало других вариантов переделок – с регуляторами, без, делают даже импульсные устройства. Во многом это хобби, и использовать самодельное ЗУ для недешевого автомобиля, итак напичканного электроникой, затея не лучшая. Конечно, при наличии «доноров» можно набить руку и впоследствии делать приличные приборы.

Теперь пошагово. Первое – удаляют лишние жгуты с разъемами, при этом оставляя пару желтых кабелей (+12 В) и пару черных (0 В). Далее отключают цепи сигнала включения (Power_ON) – они используются материнской платой для управления блоком. Это дорожка, идущая к выводам 13-14-15. Если ее убрать – схема будет включаться при подаче 220 В. Есть еще один вариант – используя паяльник, сделать перемычку между общей шиной и площадкой зеленого кабеля.

Есть участок схемы, который не нужен, то есть его можно смело отрезать. На изображении он обведен голубым.

Схема

Ненужный участок схемы.

Расходы на питание таким образом упадут, и это хорошо скажется на энергоэффективности самодельного ЗУ. При желании, выпаивают элементы выпрямителей тех напряжений, которые не задействуются. Удобно ориентироваться по цвету.

Черный0 В
Желтый+12
Синий-12
Оранжевый+3.3
Серый+5 PG
Фиолетовый+5 Stand by
Зеленый+5 Power_ON
Белый-5
Красный+5
Коричневый+3.3 Sense

Далее необходимо сделать так, чтобы можно было выставить выходное напряжение. Ноутбук или ПК требуют на выходе 12 В, а зарядке поболее – до 14.5 В. А если добавить и регулировку вниз, подзаряжать получится и АКБ 6 Вт. Делается это удалением резисторов, соединенных с выводом 1, вместо которых ставится потенциометр 100 кОм. После этого станет доступна регулировка выходного напряжения в диапазоне 6 – 16 В. Для большинства ситуаций этих параметров достаточно.

Вариант с включением амперметра и вольтметра – приборов, которыми будет измеряться ток и напряжение, наиболее затратный. Удобнее, если брать цифровой блок. Регулировочные рычажки обычно выводят на внешнюю панель готового ЗУ. Как он будет выглядеть, то есть каким будет корпус – вопрос фантазии. Также придется подобрать место расположения клемм, чтобы удобно было подключать источник питания.

Необходимо учесть, что рассматриваемая схема не предполагает узла контроля степени заряженности. Подсоединяя батарею к зарядке, напряжение ставят 14 В и смотрят на ток заряда. Если высокий, что обычно встречается с глубоко севшими батареями, снижают напряжение, пока ток не будет 6 – 7 А. В ходе подзарядки ток начнет падать, при этом напряжение повышают до 14 – 14.5 В. Полностью заряженная АКБ – когда зарядный ток находится на отметке 0.1 – 0.15 А.

Схем для любителей переделок в сети масса, есть даже варианты ЗУ из ИБП. Важно помнить, что это работы с электричеством, где возможны повреждения током. Поэтому надо придерживаться техники безопасности, работать в средствах индивидуальной защиты и обладать должным опытом.

Как собрать блок питания с регуляторами своими руками

Для радиолюбителей, да и вообще современного человека, незаменимой вещью в доме является блок питания (БП), ведь он имеет очень полезную функцию — регулирование напряжения и тока.

При этом мало кто знает, что сделать такой прибор при должном старании и знаниях радиоэлектроники вполне реально своими руками. Любому радиолюбителю, которому нравится возиться дома с электроникой, самодельные лабораторные блоки питания позволят заниматься своим хобби без ограничений. Как раз о том, как своими руками сделать регулируемый тип блок питания расскажет наша статья.

Что нужно знать

Блок питания с регулировкой тока и напряжения в современном доме – необходима вещь. Этот прибор, благодаря своему специальному устройству, может преобразовать напряжение и ток, имеющееся в сети до того уровня, который может потреблять конкретный электронный прибор. Вот примерная схема работы, по которой можно своими руками сделать подобный прибор.

Схемы для БП

Но готовые БП стоят достаточно дорого, для того чтобы покупать их под конкретные нужды. Поэтому сегодня очень часто преобразователи для напряжения и тока изготавливаются своими руками.

Обратите внимание! Самодельные лабораторные блоки питания могут иметь различные габариты, показатели мощности и прочие характеристики. Все зависит от того, какой именно преобразователь вам нужен и для каких целей.

Профессионалы могут легко сделать мощный блок питания, в то время как новичкам и любителям подойдет для начала простой тип прибора. При этом схема, в зависимости от сложности, может использоваться самая разная.

Что нужно учитывать

Детали блока питания

Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:

  • трансформатор;
  • преобразователь;
  • индикатор (вольтметр и амперметр).
  • транзисторы и прочие детали, необходимые для создания качественной электрической сети.
Читайте так же:
Как отрегулировать двигатель с магнето

Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит. К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП. Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.

Простой вариант схемы БП

Простая схема сборки

Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:

  • она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники;
  • простой тип сборки и дальнейшей настройки;
  • здесь нижний предел для напряжения составляет 0,05 вольт;
  • двухдиапазонная защита для показателя тока (на 0,05 и 1А);
  • обширный диапазон для выходных напряжений;
  • высокая стабильность в функционировании преобразователя.

Часть боока питания

В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.

Обратите внимание! Диодный мост следует выбирать, исходя из показателя максимального тока, который будет ограничиваться имеющейся защитой.

Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон. Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования.

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Приступаем к сборке

Трансформаторы для блока питания

После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями.
Для сборки вам понадобятся:

  • мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В;
  • конденсатор. Можно использовать модель на 10000 мкФ 50 В;
  • микросхема для стабилизатора;
  • обвязки;
  • детали схемы (в нашем случае — схема, которая указана выше).

После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.

Собраный БП

Для сборки БП используются следующие детали:

  • германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы;
  • на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
  • стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения;

Обратите внимание! Поскольку стабилитрон Д814 отбирает ровно половину напряжения на выходе, то его следует выбирать для создания 0-25В выходного напряжения примерно на 13 В.

  • нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя;
  • стрелочные индикаторы отображают показатели тока и напряжения.

Компоненты для сборки

Детали для сборки

Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.

Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.

Заключение

Используя простые схемы для сборки регулируемого типа блока питания, вы сможете набить руку и в дальнейшем делать своими руками более сложные модели. Не стоит брать на себя непосильный труд, так как в конечном итоге вы можете не получить желаемый результат, а самодельный преобразователь будет работать неэффективно, что негативным образом может сказаться как на самом приборе, так и на функциональности электроаппаратуры, подключенной к нему.
Если же все сделать правильно, то на выходе вы получите отличный блок питания с регулировкой напряжения для своей домашней лаборатории или других бытовых ситуаций.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector