Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лазер из DVD

Лазер из DVD

Наверно у всех еще с детства была мечта иметь свой собственный мощный лазер, способный прожигать стальные листы, теперь мы можем на шаг приблизиться к мечте! листы стали резать не будет, а вот пакеты, бумагу, пластмассу легко!

Для нашего лазера нам понадобится во первых сломанный или не очень резак! Чем менее сломан резак и чем быстрее он может записывать диски тем лучше, да кстати он должен быть DVD-RW. Если привод записывает DVD+/-R со скоростью 16х то там стоят 200 мВт красные лазеры, в 20х приводах стоит лазер 270 мВт, а в приводах со скоростью 22х мощность может доходить до 300 мВт. Все DVD приводы также имеют сидишный ИК лазер, но как его определить вы узнаете позже. Сразу уточню, так как возникает много вопросов. Вырезка из FAQ, которое Вы можете прочитань на нашем сайте http://lasers.org.ru/faq.html

Вопрос: А какой лазерный диод подойдет?

Ответ: Подойдет ЛД только от пишущего привода! причем:

CD-RW — мощный 100–200 мВт ИК лазер 780нм

DVD-Combo (DVD-Drive/CD-recordeble) — слабый красный диод примерно как в китайской указке и мощный 100–200 мВт ИК лазер 780нм

DVD-RW — мощный красный ЛД 650нм 150–300 мВт и мощный 100–200 мВт ИК лазер 780нм

BLU-RAY ROM — сине-фиолетовый диод 405 нм мощностью 15 мВт.

BLU-RAY RW — сине-фиолетовый диод 405 нм мощностью 60-150 мВт. Светит ярче красного.

Во всех остальных бытовых устройствах (принтеры, мышки, сканеры штрих кода, и т. д.) лазеров достаточной мощности нет! Везде мощность порядка 5 мВт.

Итак приступим! Разбираем резак, вытаскиваем оптическую часть. Вот так выглядит эта часть резака:

Ценного там только выходная линза и два лазера. Теперь достаем самое главное — DVD лазер:

А теперь внимание! Пока вы еще не начали играть с новой игрушкой распишу ка я вам технику безопасности. Лазер из DVD-RW привода относится к классу 3B, а значит он очень опасен для зрения! не направляйте луч в глаза и в зеркало! даже глазом моргнуть не успеете, зрение станет значительно хуже! парнишка на одном форуме засветил себе нечаянно, попал на несколько тысяч уёв. Это ему считай повезло. сфокусированным лучом повредить зрение можно и со ста метров! Смотрите куда светите!

Можно ли испортить ЛД (лазерный диод)? Можно! Даже очень просто. Стоит только превысить ток и диоду наступит конец. Причем доли микросекунд будет достаточно! Именно поэтому ЛД боятся статического электричества. Оберегайте ЛД от него! На смом деле ЛД не сгорает, просто рушится оптический резонатор внутри и ЛД превращается в обычный светодиод. резонатор рушится не от тока, а от световой интенсивности, которая в свою очередь зависит от тока. Также надо быть внимательным к температуре. При охлаждении лазера, КПД его растет, и при том же токе интенсивность возрастает и может разрушить резонатор! Осторожнее! Еще его легко убить переходными процессами, возникающими при включении и выключении! От них стоит защититься.

Достаем лазер и сразу же тонкой жилой из многожильного провода обматываем ему ноги! чтобы электрически выводы ЛД были соединены! припаеваем к его ногам небольшой неполярный конденсатор на 0,1мкФ и полярный на 100мкФ и только потом снимаем жилу, которую намотали! Так мы спасем его от статики и переходных процессов, которые ЛД очень не любят!

Теперь время подумать о питании нашего лазера. ЛД питается примерно от 3V и потребляет 200–400 мА в зависимости от мощности(скорости привода). Лазер это не лампочка! Ни в коем случае не подсоединяйте его напрямую к батарейкам! Без ограничительного резистора его быстро убьют и 2 батарейки от лазерной указки! ЛД нелинейный элемент, поэтому питать его надо не напряжением, а током! то есть нужны токо ограничивающие элементы.

Вот так лазер выглядит изнутри:

Итак, надо бы запитать наш лазер!

Рассмотрим три схемы питания ЛД от простейшей, к наиболее сложной. Все схемы питаются от источников постоянного тока, например аккумуляторов.

1 Вариант. Ограничение тока резистором.

Cопротивление резистора определяется экспериментально, по току через ЛД. Cтоит остановиться на 200 мА для 16х, дальше риск спалить больше. Хотя мой ЛД и на 300 мА работал прекрасно. Для питания подойдут три любых аккумулятора на нужную емкость, также удобно использовать аккумулятор от мобильного телефона (любого).

Достоинства: простая конструкция, высокая надежность.

Недостатки: ток через ЛД постепенно падает. И толком не понятно когда конструкцию пора подзаряжать. Использование трех аккумуляторов усложняет конструкцию и неудобна зарядка.

Данную схему удобно размещать в китайском фанарике, где стоит батарея из трех ААА(мизинчиковых) батареек

А вот так он выглядит в сборе:

Два резистора по 1 Ому последовательно и два конденсатора.

Вариант 2. Использование микросхемы LM317.

В этой схеме все гораздо сложнее, и она прекрасно подходит для стационарного варианта лазера! В драйвере используется микросхема LM317, которая включена стабилизатором тока. См рисунок.

Драйвер поддерживает постоянный ток через ЛД независимо от питания (не меньше 7В) и температуры. Советую скачать даташит на эту микросхему и разобраться основательней, а так это лучший драйвер для дома!

3 Вариант. Компактный. На LM2621.

Это то, что нужно! Питание от двух аккумуляторов, стабильное напряжение (а следовательно и ток) на ЛД, которое не зависит от уровня зарядки акккумуляторов! Когда аккумуляторы разрядятся, схема выключится и через ЛД будет идти малый ток (слабое свечение). Наиболее умный и экономичный драйвер! КПД около 90 %. И все это на одной LM2621 в малюсеньком корпусе 3х3мм!! тяжело паять, зато у меня получилась плата 16х17мм! И это не придел! См рисунок.

Дроссель L1 я намотал на шару, микруха умная, сама во всем разберется). Я намотал 15 витков проводом 0.5мм на дросселе от компьютерного БП. Внутренний диаметр дросселя 2.5мм, проницаемость феррита неизвестна. Диод шоттки любой 3-х амперный. Например 1N5821,30BQ060,31DQ10,MBRS340T3,SB360,SK34A,SR360. Резистором R1 настраиваем ток диода. советую при настройке подключить туда переменник на 100к. Кстати, все испытания желательно проводить на мертвом ЛД! электрические параметры остаются неизменными. Выбрав для себя подходящую схему, собираем её! Ну а дальше полет для фантазии!! нужно придумать как закрепить оптику! причем ЛД нужно поставить на радиатор! При большом токе он очень хорошо греется! так что заранее продумывайте конструкцию.

Оптика лазера.

Удобно использовать лазерную указку как основу для коллиматора. В ней стоит неплохая линза. Но луч получается примерно 5мм диаметром, а это много. Лучшие результаты показывает родная оптика (выходная линза) но с ней свои трудности. Фокусное расстояние мало, а значит фокус очень сложно настроить, но в тоже время это позволяет получить луч диаметром 1мм!! К слову, чем уже луч, тем большая энергия прикладывается к 1мм 2 таким лучом можно влегкую шинковать черные пакеты)) если же выполнять фокусировку не в луч, а в точку, то в этой точке плавится пластмасса, режется изолента, дерево начинает аж светиться белым светом от нагрева!(6000 градусов не шутки) и многое другое!! Кстати у нас на форуме можно купить лазерные модули фирмы AixiZ — ими можно отлично сфокусировать луч и для дальности и для прожигания!

Читайте так же:
Порядок регулировки клапанов hover h3

Вот несколько фоток луча и самой указки

Как выбрать лазерную указку на примере красного лазера 300 мВт

Автор: Artemka 19.11.2008 23:36

На днях я задумался, какое же это удивительное изобретение лазер… Только подумайте, энергия способная проплавить пластик сосредоточена в луче и устремляется в бесконечнось! Луч, который исходит из твоих рук и достает до облаков! До тех, что кажутся недоступными для людей… ну а чего стоят взгляды прохожих! Про одногруппников и коллег по работе и речи нет, они в шоке когда видят как острый луч резво вырезает кружочки из черного пакета! Решил я рассказать Вам о характеристиках лазера, а именно о характеристиках лазерной указки на полупроводниковом лазере. Так уж завелось, что люди любят сравнивать и выяснять у кого больше, лучше, дороже… а по каким параметрам лазеры сравнивать? И тут пошел маркетинг… 99 % людей при выборе лазера ведутся на мощность! Она интересует их в первую очередь! как же они ошибаются… хотя примерно так же, как и люди которые гонятся за мегапикселями.

На самом деле мощность далеко не идеальный параметр, по которому стоит упорядочивать лазерные указки. Перечислю параметры, которые важны конечному пользователю: Мощность, надежность, толщина луча (апертура), расходимость луча, габариты, защита от перегрева, стабильность излучаемой мощности, удобство питания, механическая прочность. Не мало параметров, правда? А теперь о каждом помаленьку…

Мощность-мощность светового потока. так ли она важна? несомненно! чем мощнее, тем лучше! однако лампочка на 100Вт излучает гораздо больше световой мощности, но не прожигает ничего… В общем общий смысл: мощность нужна как можно больше, но при условии что остальные параметры тоже на высоте.

Надежность: ну тут вроде все ясно, чем дольше проработает и чем больше «защит от дурака» тем лучше. это к слову о китайских указках, которые продают в сети интернет. Почитайте отзывы людей и поймете, что если лазер проработает неделю, это уже удача.

Толщина луча: казалось бы, что в ней такого? а вот что! если распределить 300 мВт мощности лазерного излучения на площадь 1квадратный метр, то его почти не будет видно! ни о каких эфектах плавления, горения и речи нет! Короче, для того, чтобы плавить, резать, зажигать необходима достаточная плотность излучения. её можно увеличить двумя способами, либо увеличивать мощность, либо уменьшать площадь, на которую воздействуем. Если 300 мВт мощности сосредоточить на круглой площадке диаметром 3мм (точка обычной китайской указки на 1 мВт), то максимум можно проплавлять пакеты, и то долго! пластик не плавится, спички не зажигаются… но если поставить хорошую оптику и сделать луч в два раза тоньше, то плотность возрастает в 4 раза! тут и пластик плавится, и спички зажигаются.

Расходимость луча: так уж сложилось что нет ничего идеального, и луч лазера постепенно становится шире и шире… уже через пару десятков метров диаметр луча достигает 1 см! расходимость зависит от толщиы луча. чем тоньше луч, тем быстрее он расходится. Однако даже тонкий луч достает до облаков и на них видно маленькую точку.

Габариты: все стремятся к минимуму размеров и массы без проигрыша в остальных параметрах..

Защита от перегрева: лазер достаточно мощный и ощутимо греется. без охлаждения за пару секунд он перегревается. Установив радиатор побольше и обеспечив хороший контакт можно с уверенностью сказать что лазер не выйдет из строя от того, что забыли его выключить.

Стабильность излучаемой мощности: Вот тут интересно) видели яркие лозунги в интернете? 100 мВт, 200 мВт, 300 мВт? а на деле раза в два меньше… дело в том, что при использовании примитивных драйверов мощность лазера сильно зависит от состояния батареек. Я погулял по сайтам производителей батареек и видел графики разряда батареек, так вот когда батарейка новая, на ней 1.5Вольта, но уже через секунду напряжение падает до 1.2–1.3Вольт! и так достаточно долгое время, после чего напряжение начинает стремительно падать-батарея разряжена. ну так вот, эта мощность приводится для напряжения питания 4.5В, а в реальной жизни после включения лазер сначала моргнет полной мощностью, а потом выйдет на режим в пол мощности… вот такие результаты… чтобы такого не было, нужно применять интеллектуальные драйверы, которы стабилизирую ток лазера вне зависимости от состояния батареек. но они дороги и в китайцами не используюся.

Удобство питания: Видел в сети лазер, питается от двух CR2 литиевых батареек, вроде хорошо, да? маленькие, легкие… вот только какого отдать за каждую батарейку 100 рублей? через час она сядет, и что? снова 200р выкидывать? Да и далеко не в каждом магазине можно наити эти редкие батарейки. Другое дело стандартные ААА и АА батарейки и аккумуляторы. дешёвые и распространенные.

Механическая прочность: очень обидно смотреть на обломки лазера, который выпал из рук на асфальт… чем прочнее лазер, тем больше вероятность что он выживет в экстремальных условиях. Я занимаюсь продажей лазеров, поэтому для меня крайне важны все эти параметры. И вот чего я достиг в этой области:

Нормально? «Голова» выточена на токарном станке из алюминия, лазер точно не перегреется!)) остальная часть взята от фонарика.

Драйвер: Вот тут я постарался и разработал отличный драйвер! Он независимо от источника питания поддерживает выходную мощность на уровне 300 мВт! То есть не нужно беспокоиться, что при замене батареек на аккумуляторы упадет мощность, да и эффект первых трех секунд тут устранен, мощность всегда 300 мВт пока батарейки не сядут. Кстати контролируется еще и температура! Известны случаи когда лазер сгорал от холода. На холоде возрастает КПД и лазер выходит из строя. Мой драйвер следит за температурой и при охлаждении постепенно снижает ток через диод. Испытывал до 0 градусов, все работает! Сразу предупрежу, нигде в сети описаний этого драйвера нет и просить меня чтоб я дал схему бесполезно.

Оптика: Предлагаю покупателям два варианта, либо толстый луч (

1мм). Кому нужно для световых эффектов, тот берет с толстым, потому что расходится меньше. А для прожигания, зажигания и наблюдения луча покупают с тонким лучом. Лазер с тонким зажигает спички, плавит пластик, коробку от ДВД диска за несколько секунд насквозь! Все это можно посмотреть на видео в конце статьи.

Читайте так же:
Регулировка фар субару форестер 2011

Питание: Для питания лазера используется 3 ААА элемента (аккумуляторы или батарейки) независимо от этого гарантируется полная мощность. при питании от батареек полная мощность примерно полчаса, потом постепенно снижается. от аккумуляторов (ввиду их большей емкости) время работы на полную раза в 4 больше.

Читайте также

Анатолий Вассерман: Антипиратский лазер Анатолий Вассерман

Анатолий Вассерман: Антипиратский лазер Анатолий Вассерман Опубликовано 08 февраля 2011 года К оглавлению

Почему лазер не режет? (Причины и решения)

Станок для лазерной резки металла сейчас является одним из основных инструментов механической обработки металла и обрабатывающей промышленности, многие смежные предприятия начинают использовать его для замены традиционного режущего оборудования.

Однако это крупное высокоточное оборудование будет иметь множество проблем из-за неправильной эксплуатации или отсутствия технического обслуживания. В процессе резки может возникнуть проблема непрорезания материала полностью.

Как же избежать этого?

Давайте рассмотрим причины и способы решения проблемы непрорезания лазером материала до конца.

Причины, по которым лазер не прорезает металл

Лазерная резка — сложный процесс. В процессе резки разрез часто бывает неровным или не прорезанным полностью.

Существует множество причин неудачной резки. Наиболее распространенной из них является снижение мощности лазера или старение ламповой трубки, что делает энергию лазерного луча недостаточной, что приводит к неудачной резке образца.

Если скорость резки слишком высокая, фокусирующая линза повреждена, эффект фокусировки слабый, путь света неправильный, а напряжение нестабильное, все это может быть причиной, по которым лазерная резка не проходит весь путь.

Конечно, существует множество факторов, из-за которых надрез не получается гладким или сквозным, например, сам материал, недостаточное давление вспомогательного газа, мутность воды в системе охлаждения, плохой эффект рассеивания тепла и так далее.

Необходимо серьезно отнестись к проблеме лазерной резки и найти решение этих проблем, это имеет большое значение для повышения эффективности производства и обеспечения высокого качества лазерной резки.

Ниже приведен подробный список из шести причин, из-за которых лазерная резка может не прорезать металл до конца.

Причина 1: Падение мощности лазера уменьшается

После долгого времени использования, мощность оптоволоконного лазерного станка будет постепенно уменьшаться, что приводит к снижению режущей способности, а также к ситуации, когда резка не будет проходить до конца.

Причина 2: Загрязнение оптических элементов

Оптические элементы включают фокус линзы, отражатель и т.д., поскольку они длительное время находятся в плохих рабочих условиях, на поверхности этих линз появляется нагар, что снижает мощность лазерного оборудования и приводит к ситуации неполной резки.

Причина 3: Отладка светового пятна не соответствует стандарту

Световое пятно оптоволоконного лазерного станка является важным фактором, влияющим на качество резки. Когда светлое пятно отладки не может достичь стандарта, не получится получить чистый сквозной разрез.

Причина 4: Слишком высокая скорость резки

Если скорость резания слишком высока, неизбежно возникнет ситуация не прорезания металла.

Причина 5: Давление вспомогательного газа недостаточно

Вспомогательный газ используется для того, чтобы помочь удалить расплав из зоны резки. Когда давление воздуха не недостаточно высоко, расплав трудно удалить, что приводит к не прорезания металла.

Причина 6: Толщина обрабатываемого листа превышает толщину резки оборудования

Оптоволоконные лазерные станки имеют диапазон толщины резки, если диапазон толщины превышает рекомендуемый для конкретного станка, режущий эффект оборудования не будет идеальным, и по причине этого будет возникать не прорезание металла.

Решение проблемы, когда лазер не режет насквозь:

  • Для решения проблемы, когда мощность лазера падает, а ток мал, необходимо вовремя заменить лазерную трубку и использовать более мощный регулятор напряжения, чтобы увеличить выходной ток лазера и улучшить выходную мощность.
  • Необходимо правильно снизить скорость резки, своевременно и разумно очистить загрязненные зеркала и заменить фокусирующие линзы.
  • Если световой путь неправильный, его необходимо отрегулировать и настроить фокусное расстояние, пока лазер не сделает круглую отметку на бумаге.
  • При резке меди и алюминия лучше заранее отполировать поверхность или нанести светопоглощающий компонент, чтобы решить проблему высокого коэффициента отражения.
  • Регулярно очищайте сопло от посторонних частиц, повышайте давление вспомогательного газа до необходимого и вовремя меняйте дистиллированную воду в системе охлаждения.

Мы надеемся, что эти меры помогут вам эффективно решить проблему не прорезания металла.

Если вы столкнулись с проблемами, которые невозможно решить самостоятельно, вы должны вовремя сообщить об этом поставщику, чтобы найти профессиональный послепродажный персонал для дальнейшего изучения, осмотра и обслуживания.

Наша компания предоставляет обширный спектр сервисных услуг , если у Вас возникла техническая неисправность, доверьте ремонт станка специалистам.

Выполнив запланированные работы, мы обязательно расскажем сотрудникам Вашей компании о правилах технического обслуживания того или иного станка, графиках плановых осмотров узлов и агрегатов.

Техническое обслуживание оптоволоконного лазерного станка:

  • Используйте пылесос для удаления пыли и грязи в станке раз в неделю, а все электрические шкафы должны быть закрыты для защиты от пыли.
  • Всегда проверяйте стальной ремень оптоволоконного лазерного станка и убедитесь, что он натянут. В противном случае, если в процессе работы возникнут проблемы, это может травмировать людей и даже привести к смерти. Стальной ремень выглядит как небольшая вещь, но если что-то пойдет не так, это вызовет много проблем.
  • Каждые шесть месяцев проверяйте прямолинейность пути оптоволоконного станка и вертикальность станка, своевременно проводите техническое обслуживание и отладку в случае каких-либо отклонений. Если вы этого не сделаете, эффект резки может быть не очень хорошим, и ошибка будет увеличиваться, что повлияет на качество резки. Это самое важное, что нужно сделать.
  • Лазерная режущая головка с двойным фокусным расстоянием является уязвимым элементом на станке для лазерной резки, который поврежден из-за длительного использования.
  • Направляющие оптоволоконного лазерного станка следует регулярно очищать от пыли и другого мусора, чтобы обеспечить нормальную работу оборудования. Стойку следует часто протирать, а также добавлять смазочное масло, чтобы обеспечить надлежащую смазку оборудования. Направляющая рейка и двигатель должны часто очищаться и смазываться, чтобы станок мог функционировать без проблем и резать более точно, а качество вырезанных изделий улучшилось.

Советуем вам прочитать статью опубликованную в нашем блоге ранее: «Как продлить срок службы оптоволоконного лазерного станка?».

Если вам понравилась статья, то ставьте лайк, делитесь ею со своими друзьями и оставляйте комментарии!

Как отрегулировать ток лазера

ВСЯ ПРЕДСТАВЛЕННАЯ ИНФОРМАЦИЯ ТОЛЬКО ДЛЯ САМООБРАЗОВАНИЯ

Вы попали на портал посвященный микроэлектронным технологиям. Мы постараемся сделать все для того чтобы вы возвращались сюда вновь и вновь.

Этот портал создан для общения и обмена опытом между нами.

Обращаю внимание всех, у нас запрещено пытаться купить или продать любые устройства связанные со спецтехникой. Подобные письма будут игнорироваться. Все попытки использовать портал для продажи или покупки спец. техники или того, что может использоваться как спецтехника будут жестоко караться, мнение администрации обсуждению не подлежит. У нас тут кружок — Сделай сам, а не лоток на рынке.

Читайте так же:
Регулировка карбюратора к 68и

Основная тематика — спец техника и ее техническая реализация в «железе».
Если вы хотите не просто тупо копировать чужие идеи, а научиться самим придумывать и воплощать на практике что-то свое, то этот портал для вас. Мы, всем нашим сообществом, готовы оказать посильную поддержку всем начинающим.

С уважением, Администрация.

Автор: Werewolf
Oct 30 2021, 10:46 PM
В Японии успешно испытали дрон, работающий от микр

В Японии успешно испытали дрон, работающий от микроволнового излучения

Научной группе из Японии удалось успешно поднять в небо небольшой дрон, который использовал энергию микроволн для питания своих электродвигателей и таким образом успешно совершил тестовые полеты. Вот про этот эксперимент и пойдет речь в текущем материале.
Микроволны и перспектива их использования в будущем
Как известно, на текущий момент большая часть ракет летает на жидком или же твердом виде топлива. И при этом вес необходимого для полета вещества может составлять до 90% от общей массы всей ракеты.

По этой причине многие ученые заняты поиском альтернативных вариантов питания различных летательных аппаратов. И одним из перспективных направлений является использование микроволн.

Для справки. Микроволны – одна из разновидностей электромагнитного излучения, в которой присутствует энергия, и она вполне может быть преобразована в электроэнергию также, как и в случае с солнечными панелями.
Так в очередном научном эксперименте японские инженеры вырабатывали электричество для питания беспилотных летательных аппаратов, преобразовывая его в электроэнергию.
Так в ходе эксперимента микроволновое излучение передавалось от специальных антенн, размещенных на земле, к антенне на дроне.

В дальнейшем специальный выпрямитель преобразовывал радиочастоту в постоянный ток, который в потом использовался для обеспечения работы двигателей дрона.

До этого ученые экспериментировали с низкочастотными волнами, но было установлено, что повышение частоты позволяет существенно повысить эффективность передачи энергии.

В результате этого в крайнем эксперименте ученые применили частоту в 28 ГГц для поднятия в воздух дрона весом 400 грамм.

Так во время теста беспилотник улавливал приблизительно 30% излучаемого микроволнового излучения и приблизительно 40% из «пойманного» излучения успешно трансформировал в электроэнергию.

Несмотря на явный успех, технология еще далека от полноценного коммерческого использования и ученые еще будут активно работать над повышением эффективности улавливания и преобразования излучения в электричество.

Но, несмотря на все текущие сложности, возможно, в недалеком будущем небольшие летательные аппараты будут получать энергию для полетов именно таким образом.

Ну а если вам понравился материал, то оцените его и не забудьте подписаться на канал. Спасибо за ваше внимание!

В мире набирает популярность альтернативная, некоммерческая сеть беспроводного интернета, которую энтузиасты строят из обычных бытовых точек доступа WiFi, размещаемых на высоких зданиях.
В неспокойном современном мире иногда власти любят "побаловаться" отключениями сети по своему усмотрению и видимо поэтому люди решили попробовать сделать что-то своё..
На всякий случай.

Новая статья на сайте, тема мне интересна, постоянно использую подобный пинцет в работе https://vrtp.ru/index.php?act=categories&CO. le&article=3863 а тут еще и ПО для компьютера, все для самостоятельной сборки.

Британский предприниматель и изобретатель Клайв Синклер, компания которого выпустила компьютер ZX Spectrum, умер в возрасте 81 года, сообщает The Guardian.

В России решили заблокировать шесть VPN-сервисов

Роскомнадзор принял решение ограничить доступ к шести VPN-сервисам, которые используются для обхода блокировок. Об этом сообщает газета «Известия» со ссылкой на пресс-службу регулятора.

Речь идет о Hola VPN, ExpressVPN, NordVPN, Speedify VPN, KeepSolid VPN Unlimited и IPVanish VPN. В Роскомнадзоре пояснили, что использование этих сервисов «приводит к сохранению доступа к запрещенной информации и ресурсам, создает условия для незаконной деятельности, в том числе связанной с распространением наркотиков, детской порнографии, экстремизма и так далее».

Отмечается, что решение о блокировке шести VPN-сервисов было принято в соответствии с правилами централизованного управления сетью связи общего пользования, утвержденных постановлением правительства России №127 от 12 февраля 2020 года.

Закручиваются гаечки потихоньку, всё сильнее и сильнее. Продвинутые пользователи всегда найдут способ обойти блокировку, благо на спец ресурсах полно инфы о не популярных сервисах, но простым пользователям придётся скоро туго.

Как создать микропроцессор в домашних условиях. Энтузиаст создал интегральную схему с 1200 транзисторами у себя в гараже

Прошлая его ИС имела лишь 6 транзисторов
Современные процессоры опираются на сверхтонкие техпроцессы и включают миллиарды транзисторов, упакованных в крошечных чипах. Можно ли создать подобный CPU дома? Конечно, нет, но всё же создать в домашних условиях примитивный процессор вполне возможно.

Несколько лет назад известный в определённых кругах энтузиаст-самоучка Сэм Зелуф (Sam Zaloof) создал первый в своём роде чип Z1 в домашних условиях. Он состоял всего из 6 транзисторов. Теперь Зелуф решил повторить эксперимент, создав нечто существенно более сложное. И у него получилась интегральная схема Z2 с 1200 транзисторами, выполненными по техпроцессу 10 мкм. Для сравнения, Intel 4004 — первый в мире коммерчески доступный однокристальный микропроцессор — производился по тому же техпроцессу и содержал 2300 транзисторов.
Процесс изготовления достаточно подробно описывается как на сайте Зелуфа, так и в видео. Основное — не было никаких чистых помещений и чистых химикатов.

Мир на пороге глобального дефицита конденсаторов из-за решения властей всего одной страны. В мире возникла угроза нехватки керамических MLCC-конденсаторов, используемых в автомобилях и современной электронике. В Маниле (Филиппины) введен локальный локдаун из-за коронавируса, который может распространиться на фабрики крупных компаний по выпуску таких конденсаторов. Риск ограничений возник и в ряде городов Китая, где тоже есть заводы по производству MLCC.

Конденсаторов на всех не хватит
Во всем мире может начаться дефицит многослойных керамических конденсаторов поверхностного монтажа (multilayer ceramic capacitors, MLCC), сообщает аналитическая компания TrendForce. Угроза нехватки этих компонентов, используемых во всех современных электронных устройствах, возникла из-за властей всего лишь одной страны – Филиппин.

По данным TrendForce, филиппинское правительство распорядилось ввести коронавирусные ограничения в Маниле (столица Филиппин) и ее округах. Это может вызвать трудности с выпуском MLCC на фабриках компаний Samsung и Murata, расположенных в непосредственной близости от Манилы. Ограничения введены до 20 августа 2021 г.

Завод японской компании Murata расположен в Танаунане. На нем выпускаются конденсаторы крупных размеров преимущественно для автомобильной электроники. В общей сложности на Филиппины приходится 18% общего объема производства MLCC для автомобилей.

Не смотря на то, что на форуме тема FPGA/CPLD отсутствует как явление (хотя отдельные проекты наблюдаются) ,
развитой мир движется вперед не сбавляя обороты.
Компания Xilinx представила адаптивную систему на кристалле Versal AI Edge Series .
links:(RUS), (ENG).

image
источник изображения www.xilinx.com

Texas Instruments представляет новые высококачественные 32-битные аудио АЦП

Texas Instruments представила высококачественный аудио аналого-цифровой преобразователь (АЦП) Burr-Brown, поддерживающий одновременную выборку до двух каналов. Устройство имеет дифференциальные линейные и микрофонные входы с максимальным уровнем сигнала 2 В с.к.з. Микросхема, в которую интегрированы схема ФАПЧ и фильтр верхних частот для удаления постоянной составляющей, поддерживает частоты выборки до 192 кГц. АЦП могут работать с аудио форматами TDM (временнóе разделение сигналов) или I2S, аппаратно выбираемыми с помощью внешних выводов. Кроме того, для работы интерфейса аудиошины в PCM182x предусмотрена возможность выбора режима ведущего и ведомого. Эти интегрированные высокоэффективные функции, наряду с возможностью питания от одного источника 3.3 В, делают устройство отличным выбором для чувствительных к стоимости аудиосистем с ограниченным объемом в приложениях для записи с микрофонов, расположенных в дальней зоне.
Параметры микросхем PCM182x гарантируются в диапазоне температур от –40 °C до +125 °C. Приборы выпускаются в 20-контактных корпусах WQFN размером 3.00 × 3.00 мм.

Основные характеристики
Высококачественный стерео АЦП:
2-канальный аналоговый микрофонный или линейный вход;
Характеристики линейного и микрофонного дифференциального входа:
Динамический диапазон PCM1820:
123 дБ с включенным расширителем динамического диапазона,
113 дБ с выключенным расширителем динамического диапазона;
Динамический диапазон PCM1821: 106 дБ;
Сумма общих гармонических искажений и шума: –95 дБ;
Дифференциальный вход АЦП с полным размахом шкалы 2 В с.к.з.;
Частота выборки АЦП от 8 кГц до 192 кГц;
Аппаратное управление конфигурацией с помощью внешних выводов;
Выбор фильтра с линейной фазовой характеристикой или с низкой задержкой;
Гибкий последовательный аудио интерфейс данных:
Выбор интерфейса ведущего или ведомого,
2-канальный 32-битный TDM,
2-канальный 32-битный I2S;
Автоматическое отключение питания при потере синхросигналов аудио
Интегрированная высокоэффективная схема аудио ФАПЧ;
Работа от одного источника питания 3.3 В;
Питание портов ввода/вывода: 3.3 В или 1.8 В;
Рассеиваемая мощность при AVDD = 3.3 В:
19.6 мВт на канал при частоте выборки 16 кГц,
21.3 мВт на канал при частоте выборки 48 кГц;

МИР ПЕРИФЕРИЙНЫХ УСТРОЙСТВ ПК

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Микросхема драйвера лазера 65ALS543. Основы архитектуры, принципы функционирования и диагностики.

Микросхема драйвера лазера занимает в лазерном принтере одну из ключевых позиций, ведь именно к ее функциям относится включение/выключение лазера, стабилизация мощности лазерного луча, защита лазера от превышения тока. Другими словам, работающий блок лазера – это, в первую очередь, исправный и правильно функционирующий драйвер лазера. На сегодняшний день производителями элементной базы предлагается достаточное количество самых разнообразных драйверов лазера с разнообразными характеристиками. Но, несмотря на все многообразие предложений по драйверам лазера, производители лазерных принтеров в своих изделиях используют ограниченный набор микросхем для управления лазерным светодиодом. Получается, что всего несколько микросхем используется для производства подавляющего большинства современных лазерных принтеров разных моделей от всех мировых брэндов. Одним из таких базовых драйверов, который используется, чуть ли не в половине всех современных лазерных принтеров, является микросхема 65ALS543. Именно о ней и пойдет наш дальнейший разговор.

В рамках данной статьи мы не будем рассказывать об общих принципах функционирования блока лазера – это известно любому специалисту, мало-мальски знакомому с лазерной печатью. Мы сразу же переходим к обсуждению микросхемы драйвера лазера. Как мы уже отмечали, микросхем 65ALS543 используется очень широко в самых разных принтерах. Кроме того, анализ запросов, посылаемых сервисными специалистами в различные конференции и форумы, посвященных оргтехнике, говорит об интересе к этой микросхеме, а также о том, что имеется потребность в ее диагностировании. К сожалению, документации (так называемого, DataSheet’а) на данный драйвер лазера не существует (по крайне мере, к нему нет широкого доступа и скачать его через Internet невозможно). Мы постараемся устранить этот информационный пробел, рассказав об этой микросхеме то, что нам известно. Сразу же оговоримся, что мы также не имеем доступа к официальной информации об этом драйвере, поэтому расскажем только о своем практическом опыте, своих наблюдениях и поделимся всем, что удалось найти и узнать об этой микросхеме.

Драйвер лазера предназначен для управления лазерным светодиодом. Если выражаться точнее, то основными функциями драйвера лазера являются:

— включение и выключение лазера в соответствии с приходящими сигналами управления;

— контроль мощности светового потока лазера;

— регулировка и стабилизация тока лазера, т.е. стабилизация мощности излучения;

— ограничение тока лазера, т.е. защита лазера.

Лазерное излучение формируется лазерным светодиодом, на который в качестве питающего напряжения подается +5В. Это напряжение прикладывается к аноду светодиода, а его катод подключен непосредственно к одному из выводов микросхемы драйвера лазера. Поэтому для включения лазера этот вывод микросхемы переводится в «низкий» уровень, что обеспечивает создание падения напряжения на лазерном светодиоде, а значит, обеспечивает протекание тока через него. Таким образом, в составе микросхемы драйвера лазера имеется встроенный транзистор (рис.1), выполняющий функцию ключа, управляющего включением/выключением лазера, а также осуществляющего регулировку тока лазерного светодиода.

На лазерном светодиоде должно создаваться падение напряжения около 2.5В (обычно 2.2В), поэтому при включенном лазере, на выводе микросхемы, который обычно обозначается LD (Laser Diode), можно контролировать напряжение порядка 3В.

Величина тока, протекающего через светодиод, определяет мощность светового потока, т.е. определяет яркость лазерного луча. Для обеспечения контроля этой мощности и стабилизации излучения имеется датчик светового потока — фотодетектор. Этот фотодетектор представляет собой фотодиод, который устанавливается с тыльной стороны лазерного светодиода. Так как светодиод обеспечивает излучение и в обратную сторону, то и мощность «прямого» и «обратного» световых потоков прямо пропорциональны. Фотодетектор и лазер расположены в корпусе «лазерной пушки», т.е. представляют собой монолитную структуру. Сигнал от фотодетектора подается на вход микросхемы драйвера лазера, и этот контакт называется PD (Photo Detector) (рис.2).

Контакт PD соединен с внутренним компаратором драйвера лазера, и его напряжение сравнивается с внутренним опорным напряжением (Vref), что позволяет оценить мощность светового потока лазера.

Общая блок-схема драйвера лазера 65ALS543 представлена на рис.3.

Но это мы описали работу драйвера лазера лишь в общих чертах, чтобы понять его базовые принципы функционирования. Теперь попробуем разобраться в некоторых деталях, которые позволят нам более осознанно подходить к процессу диагностирования драйвера лазера.

Выходной каскад

Эквивалентная схема выходного каскада драйвера лазера представлена на рис.4.

Выходной каскад современных драйверов лазера строится по схеме токового зеркала. Такое исполнение позволяет обеспечить очень точную подстройку тока лазера, позволяет иметь линейную зависимость выходного тока от входного управляющего тока, позволяет обеспечить высокую термостабильность схемы (что, кстати, очень важно для лазера, т.к. его параметры находятся в сильной и прямой зависимости от температуры).

Величина тока лазерного светодиода (ILD) определяется как сумма токов ISWO и IBIAS, т.е. ILD=ISWO+IBIAS. Ток ISWO задается токовым зеркалом, и этот ток, в свою очередь, пропорционален управляющему току ISW и он больше тока ISW в кратное количество раз (однако эта кратность для 65ALS543 нам неизвестна). Свою очередь, величина тока ISW определяется двумя основными параметрами:

— величиной сигнала от фотодетектора PD, т.е. зависит от выходной мощности лазера;

— максимальной допустимой величиной тока лазера (ISWI).

Максимально допустимая величина тока лазера ISWI задается внешним резистором RS, подключаемым к конт.1. Увеличение номинала резистора RS приводит к уменьшению тока лазера.

Вторым током, напрямую влияющим на ток лазера, является ток смещения IBIAS, величина которого задается управляющим напряжением VB и внешним резистором RB. Напряжение VB может формироваться разными способами: оно может быть сформировано внутренними источниками опорных напряжений самого драйвера лазера, или может формироваться внешними схемами, что дает возможность гибкого управления лазером. В практически схемах современных принтеров (на примере принтеров HP и Canon) ток IBIAS не используется, т.е. он равен нулю и не оказывает влияния на ток лазера. В случае, когда ток IBIAS не используется, контакты VB (конт.4) и RB (конт.3) должны оставаться свободными, т.е. должны «висеть в воздухе» и никуда не должны подключаться.

Среди внешних элементов выходного каскада драйвера лазера, отметим два.

Во-первых, это нагрузочный резистор, обозначенный на рис.4 как RL. Этот резистор подключается между минусом токового зеркала и питающим напряжением лазерного светодиода +5V. Величина тока, протекающего через этот резистор, пропорциональна току ISW, т.е. пропорциональна тока лазера. Наличие этого резистора позволяет уменьшить мощность, рассеиваемую на микросхеме драйвера лазера. Номинал этого резистора рассчитывается, исходя из величины предельного допустимого тока лазера, величины питающего напряжения и величины напряжения на выходе токового зеркала. Характеристики драйвера 65ALS543 доподлинно неизвестны, но исходя из номинала резистора RL, используемого в большинстве практических схем, можно говорить, что максимальная величина тока лазера составляет около 100 мА. При этом номинал резистора RL равен примерно 20 Ом. Все эти цифры получены в результате анализа параметров аналогичных микросхем драйвера лазера.

Во-вторых, необходимо обратить внимание на демпфирующую цепь (снаббер), состоящую из резистора Rd и конденсатора Cd. Данная цепь обеспечивает подавление всплесков напряжения при переключении светодиода. Это позволяет обеспечить защиту как лазерного светодиода, так внутренних транзисторов драйвера лазера от пробоев, хотя в первую очередь введение демпферной цепи призвано повысить качество изображения. Подавление демпферной цепью всплесков напряжения на лазерном светодиоде, приводит также и к устранению случайных световых импульсов лазерного светодиода, что оказывается чрезвычайно важным при формировании изображения с высокой разрешающей способностью. Параметры элементов Rd и Cd определяются, в первую очередь, рабочей частотой лазера, т.е. скоростью печати и разрешающей способностью принтера.

Управление драйвером

Прежде чем говорить о методах управления драйвером лазера, напомним общие принципы формирования изображения, которые являются наиболее важными для понимания функционирования драйвера лазера.

Для сканирования поверхности фотобарабана лазерным лучом предназначено вращающееся многогранное сканирующее зеркало (Polygon Mirror), которое представляет собой металлическую призму с хорошо отполированными гранями. В различных моделях лазерных принтеров это зеркало имеет разное количество граней – от 2 до 6. Каждая грань этого зеркала формирует одну строку изображения на фотобарабане.

Во время формирования строки лазер включается и выключается драйвером лазера по командам либо от микроконтроллера принтера, либо от микропроцессора обработки данных (от форматера). При включении лазера соответствующий участок фотобарабана засвечивается, и впоследствии этот участок должен быть черным. Таким образом, управление лазером должно осуществляться только в те моменты времени, когда сканирующее зеркало занимает положение, при котором отраженный луч будет попадать на фотобарабан, т.е. работа лазера должна четко синхронизироваться с положением вращающегося зеркала. Для такой синхронизации в блоке сканер/лазера предусмотрен датчик оптической синхронизации (BEAM или SOS). Этот датчик является фотодетектором, реагирующим на световой поток. Датчик BEAM (SOS) расположен так, что попадающий на него световой поток лазера соответствует началу строки, т.е. сигнал от этого датчика разрешает формирование строки изображения.

Микросхема управляется четырьмя сигналами, приходящими от микроконтроллера механизмов и от форматера. Эти сигналы называются CNT0, CNT1, VDO, #VDO (знак # обозначает, что сигнал активен «низким» уровнем). Сигналы CNT0, CNT1 формируются микроконтроллером механизмов и являются сигналами для «служебного» управления лазером. А сигналы VDO и #VDO генерируются микросхемой форматера и являются данными для управления лазером. Эти сигналы формируются в соответствии с данными из ОЗУ принтера – так называемого буфера печати. На рис.5 в качестве примера представлена блок-схема, поясняющая взаимодействие элементов принтера при управлении лазером.

Представленная блок- схема соответствует принтеру HP LaserJet 1100. Представленный вариант схемотехники является традиционным, которого и придерживается большинство производителей лазерных принтеров, хотя нельзя утверждать, что такое построение единственно возможное. В большинстве современных принтеров используется логика с питанием 3.3 В, поэтому все эти сигналы имеют уровни до 3.3 В.

При управлении лазером можно выделить несколько периодов:

1) Определение начала строки и контроль мощности светового потока.

2) Формирование полей на краях листа (рис.6).

3) Формирование строки.

Для синхронизации работы лазера с положением вращающегося зеркала Polygon Mirror вводится период поиска и определения начала строки. Для этого лазер включается на достаточно продолжительный период времени до тех пор, пока датчик BEAM/SOS не выдаст импульс низкого уровня, что соответствует такому положению зеркала, при котором луч лазера приходится на начало строки, точнее сказать, — через определенный момент времени после этого импульса лазер займет позицию в начале строки (эта временная задержка рассчитывается при проектировании принтера и учитывает скорость вращения зеркала и временные задержки электронных схем). На этом этапе лазер включен и через него протекает фиксированный ток, задаваемый микросхемой драйвера лазера, и поэтому этот период можно использовать и для определения мощности светового потока с помощью фотодетектора PD. Сигнал от PD подается на драйвер лазера, который проводит процедуру автоматической подстройки мощности лазера (APC).

После того, как датчик BEAM/SOS сформировал импульс начальной позиции зеркала, лазер выключается на фиксированный период времени для формирования белого поля с левого края. Далее лазер начинает включаться и выключаться, формируя строку изображения в соответствии с сигналами VDO и #VDO. После того, как все точки строки будут сформированы, лазер выключается для формирования белого поля с правого края. Через определенный период времени после этого луч снова генерируется для поиска начала следующей строки. Временная последовательность управления лазером при формировании изображения представлена на рис.7.

Микросхема драйвера лазера обеспечивает четыре режима работы, определяемые состоянием сигналов CNT0 и CNT1, которые формируются микроконтроллером принтера:

1. Режим сброса (Reset).

2. Режим автоматического управления мощностью лазера (APC).

3. Маскируемый режим (Masking).

4. Немаскируемый режим (Unmasking).

Соответствие режимов и состояний сигналов CNT0 и CNT1 приводится в таблице 1.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector