Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабильная работа в любых условиях: источники питания SITOP Power

Стабильная работа в любых условиях: источники питания SITOP Power

SITOP Power – обширная линейка стабилизированных источников питания от Siemens, предназначенная для работы в самых разных областях промышленности – в химической, машиностроительной, робототехнической и других. Данные источники питания подойдут практически для любых задач благодаря мощному функционалу, широкому диапазону рабочих температур, работе с нестандартными напряжениями и многим другим преимуществам.

Ни для кого не секрет, что оборудование компании Siemens широко применяется на промышленных предприятиях России и ближнего зарубежья и по количеству установок занимает первое место. И это естественно, ведь промышленное оборудование производства Siemens отличается высочайшим качеством, и это доказано временем. Если «мозгом» любой автоматизированной системы управления технологическим процессом (АСУ ТП) является программируемый логический контроллер (ПЛК), то «сердцем» будет источник питания.

Чтобы правильно подобрать источники питания, необходимо понимать принципы работы блоков питания.

Как устроен стабилизированный блок питания

Стабилизированный источник питания – это источник питания, который содержит аналоговую, импульсную или цифровую схему регулирования, благодаря которой поддерживаются постоянные выходные параметры – ток и напряжение при скачках входного напряжения. Также схема обеспечивает защиту от короткого замыкания и перегрузок.

В нестабилизированном источнике питания такая схема отсутствует. Он состоит из входного и выходного фильтров, входного и выходного выпрямителей, генератора импульсов и трансформатора, защищающего нагрузку только от перенапряжений (рисунок 1). Как видно из этого рисунка, выходное напряжение получается неустойчивым. Его параметры очень сильно зависят от качества питающей электросети. Но при этом КПД выше, чем у стабилизированного источника питания, а нагрев ниже, так как нет контура регулирования, который требует дополнительной энергии.

Серия SITOP Power относится к стабилизированным импульсным блокам питания (рисунок 2).

Рис. 1. Структурная схема простейшего блока питания

Рис. 1. Структурная схема простейшего блока питания

Рис. 2. Структурная схема стабилизированного блока питания

Рис. 2. Структурная схема стабилизированного блока питания

В таких блоках входное переменное или постоянное напряжение (Uвх) выпрямляется и преобразуется в импульсы высокой частоты. Эти импульсы подаются на первичную обмотку трансформатора. Соответственно, на вторичной обмотке появляются импульсы такой же частоты, но другого напряжения. Это напряжение снова выпрямляется и подается на блок стабилизации, и уже потом – на выход блока питания. Автоматическое регулирование заключается в коррекции номинального (Uвых.ном) и реального (Uвых) выходных напряжений.

Диапазон входных напряжений. Чем больше данный диапазон – тем надежней работа блока питания, например, при повышенном или пониженном напряжении. Линейка SITOP Power имеет очень широкий диапазон – 85…264 В постоянного тока и 400…500 В переменного тока. При этом, номинальное напряжение у однофазных блоков питания выбирается с помощью перемычки – 120 или 220 В.

Допустимое перенапряжение – кратковременный всплеск напряжения, при котором выходной ток (Iвых) все еще равен номинальному току (Iвых.ном). У семейства SITOP Power эта величина равна Uвх*2,3 в течение 1,3 мс.

Допустимый перерыв в питании – исчезновение входного тока (Iвх) до 3 мс, при которой Iвых = Iвых.ном.

Предельный импульсный ток включения. В момент включения блока питания происходит зарядка емкостей входного фильтра. Величина входного тока при этом может превышать номинальный в 3…4 раза. Если ток при запуске установки превышает значение импульсного тока включения, рассчитанный для конкретной модели – необходимо применять ограничитель пускового тока. Его отсутствие в таких случаях может привести к периодическому срабатыванию автоматического выключателя из-за больших пусковых токов.

Ограничитель пускового тока. Он необходим для уменьшения импульсных токов включения емкостей во входных цепях до безопасного уровня. Ограничитель устанавливается в разрыв цепи после автомата и перед одним или несколькими блоками питания и ограничивает их пусковые токи.

Корректор коэффициента мощности (PFC) или компенсатор реактивной мощности предназначен для снижения реактивной мощности, потребляемой блоком питания. Классическая схема выпрямления переменного тока состоит из диодного моста и конденсатора. Проблема в том, что ток заряда конденсатора представляет собой импульс и имеет очень большое значение. Например, сетевой ток импульсного источника питания при 300 Вт и 220 В будет примерно 1 А, импульсный – 4 А. А если источников будет несколько и большей мощности – скорее всего, начнутся проблемы с проводкой, розетками, поступят огромные счета за электричество. Для решения данной проблемы применяют специальный электрический модуль – корректор коэффициента мощности, который уменьшает импульсы. Он располагается между конденсатором и выпрямителем и обрезает амплитуду тока.

Коэффициент мощности – отношение активной мощности (потребляемой источником питания безвозвратно и уходящей в тепло) к полной. То есть, коэффициент мощности – отношение полезной к полученной мощности. Чем он ближе к единице – тем лучше.

Выходной номинальный ток. Величина номинального выходного тока является важнейшей характеристикой при подборе источника питания. Следует очень внимательно подсчитать потребляемый ток всех элементов, запитываемых от этого блока. Также необходимо обратить внимание на температуру, при которой будет работать блок питания. Линейка SITOP Power выдает номинальные параметры при температурах -25…70°С, в отличие от остальных производителей, когда ухудшение характеристик начинается уже с 40°С.

Читайте так же:
Рейка с индикатором для регулировки зазоров клапанов

КПД. Величина КПД влияет на тепловыделение. Чем выше КПД – тем лучше, так как блок питания выделяет меньше тепла.

Диапазон настройки уровня выходного напряжения. Большинство моделей блоков питания SITOP Power позволяет регулировать величину номинального выходного напряжения. Это позволяет обеспечить электричеством оборудование с нестандартным питанием или компенсировать падение напряжения в распределенных линиях.

Возможность параллельного включения. Параллельное включение блоков питания дает возможность использования «горячего» резервирования или сложения мощностей. Серия SITOP Power поддерживает до двух параллельно включенных источников питания.

Диапазон рабочих температур. При выборе модели блока питания необходимо учитывать, при какой температуре он будет эксплуатироваться. Одно дело, если они находятся в обогреваемых помещениях, другое – если в шкафах наружной установки. Большая часть серии SITOP Power обеспечивает нормальную работу при температурах -20…70°С. Соответственно, если температура выходит за эти рамки – в шкаф необходимо будет поставить или охлаждающий вентилятор, или нагреватель.

Индикация и сигнализация. В основном, используются транзисторные нормально открытые выходы для дистанционного наблюдения за работой блока питания и светодиоды состояния, расположенные непосредственно на приборе.

Простой БП своими руками
Вот и собрано очередное устройство, теперь встаёт вопрос от чего его питать? Батарейки? Аккумуляторы? Нет! Блок питания, о нём и пойдёт речь.

Схема его очень проста и надёжна, она имеет защиту от КЗ, плавная регулировка выходного напряжения.
На диодном мосте и конденсаторе C2 собран выпрямитель, цепь C1 VD1 R3 стабилизатор опорного напряжения, цепь R4 VT1 VT2 усилитель тока для силового транзистора VT3, защита собрана на транзисторе VT4 и R2, резистором R1 выполняется регулировка.
Трансформатор я брал из старого зарядного от шуруповерта , на выходе я получил 16В 2А
Что касается диодного моста (минимум на 3 ампера), брал его из старого блока ATX также как и электролиты, стабилитрон, резисторы.
Стабилитрон использовал на 13В, но подойдёт советский Д814Д, КС107А.
Транзисторы были взяты из старого советского телевизора, транзисторы VT2, VT3 можно заменить на один составной например КТ827.
Резистор R2 проволочный мощностью 7 Ватт и R1 (переменный) я брал нихромовый, для регулировки без скачков, но в его отсутствии можно поставить обычный. Состоит из двух частей: на первой собран стабилизатор и защита и, а на второй силовая часть.
Все детали монтируются на основной плате (кроме силовых транзисторов), на вторую плату припаяны транзисторы VT2, VT3 их крепим на радиатор с использованием термопасты, корпуса (коллекторы) изолировать ненужно .Схема повторялась много раз в настройке не нуждается. Фотографии двух блоков приведены ниже С большим радиатором 2А и маленьким 0,6А.

Индикация
Вольтметр: для него нам нужен резистор на 10к и переменный на 4,7к и индикатор я брал м68501 но можно и другой. Из резисторов соберём делитель резистор на 10к не даст головке сгореть, а резистором на 4,7к выставим максимальное отклонение стрелки.
После того как делитель собран и индикация работает нужно от градуировать его , для этого вскрываем индикатор и наклеиваем на старую шкалу чистую бумагу и вырезаем по контуру, удобнее всего обрезать бумагу лезвием.

Когда все приклеено и высохло, подключаем мультиметр параллельно нашему индикатору, и всё это к блоку питания, отмечаем 0 и увеличиваем напряжение до вольта отмечаем и т.д.
Амперметр: для него берём резистор на 0,27 ома . и переменный на 50к, схема подключения ниже, резистором на 50к выставим максимальное отклонение стрелки.
Градуировка такая-же только изменяется подключение см ниже в качестве нагрузки идеально подходит галогеновая лампочка на 12 в.

Описанный ниже блок питания применялся в одной из модификаций промышленной радиостанции "Школьная" (которая в большом корпусе и с индикатором на лицевой панели). Эта схема имеет два неоспоримых достоинства — защиту от коротких замыканий на выходе и заземленный коллектор стабилизирующего транзистора, что позволяет устанавливать его непосредственно на корпус прибора без каких-либо изолирующих прокладок, что иногда ну очень-очень надо.
Схема не требует каких либо пояснений, кроме описания действия цепочки 270 Ом — 1 мкФ. Дело в том, что без нее стабилизатор не запустится, поскольку при включении общий провод схемы оторван от средней точки вторичной обмотки трансформатора закрытым транзистором КТ805.

Для запуска стабилизатора достаточно подать кратковременный положительный импульс на базу транзистора ГТ404 a КТ805 открывается и стабилизатор подключается в работу.
Для нормальной работы стабилизатора напряжение на конденсаторе 4700 мкФ должно составлять около 22 — 25 Вольт. При использовании транзистора КТ805 максимальный ток нагрузки может достигать 4 ампер.
Возможная замена деталей. Выпрямительные диоды можно заменить на буржуйские 1N4007 — 1N4009. КТ805 в продаже есть до сих пор. ГТ404 можно заменить на КТ815, МП25 на КТ361; замена германиевых транзисторов на кремниевые добавит термостабильности. Естественно, если нам надо стабилизировать отрицательное напряжение, то все диоды и электролиты разворачиваем на 180 градусов, используем КТ837, КТ814 и КТ315 соответственно.

Читайте так же:
Регулировка тормоза лебедки лифта отис gen2

R1 — 6,8 — 10К
R2 — 240 Ом
С1 — 100 мкф Х 50V
DD1 – KP 142 ЕН 12 (LM 317 T)
VD1-VD4 – КЦ 405 или любой другой мост подходящей мощности
Т1 — любой трансформатор подходящей мощности
Краткая техническая характеристика: диапазон выходного напряжения: 1,25 — 25V; максимальный ток нагрузки: 1,5 — 2А.
После сборки устройство начинает работать сразу и никакой отладки не требует.

В радиолюбительской практике нередко возникает необходимость в мощном источнике питания с выходным напряжением 12 . 14В и током до 15, а может и более Ампер. Вот и у меня возникла такая необходимость после построения Трансивера SW-2011, который при передачи "кушает" до 3,5 А. А мой простой регулируемый лабораторный БП, для проверки различных устройств, максимум потянул бы до 2,5 Ампер. В сети интернета множество различных схем. Все они красивые и прекрасно работают по отзывам на различных радиолюбительских форумах, но . Хотелось бы подобрать под имеющиеся в наличии радиодетали. Ведь советских радиокомпонентов уже не найдешь — диодов КД213 (до 15А), транзисторов КТ827А и т.д. По сему только импорт, который без проблем можно найти на любом радиорынке, интернет-магазине. Остановился на схеме БП, который подробно описал А.Тарасов для своего трансивера с учетом всех рекомендации.
Для БП будем использовать:
Трансформатор ТН61 — четыре обмотки по 6,3 В (три обмотки на 8.0 А, одна обмотка 6,1 А)
Диодный мост KBPC3510 (1000 В; 35,0 A)
Транзистор биполярный TIP35C (n-p-n) – 1-2 штуки — 100V, 25A, 125W, 3MHz
Конденсаторы электролитические 10х4700 мкФ

Ну и, конечно же, универсальный БП из компьютерного АТХ-блока. Только один пример.

Простой блок питания

В радиолюбительской практике без блока питания никуда, и в принципе, можно использовать под эти нужды практически любой, в том числе и от компьютера.

Завалявшийся у меня старый сгоревший ATX БП постоянно мозолил глаза, вот я и решил сделать из него полезную вещь. Компьютерный импульсный блок питания выдает немного различных напряжений, но и их вполне хватит, чтобы использовать с различными радиолюбительскими поделками. Стандартные напряжения выдаваемые компютерным БП: +5в, +12в, +3.3в, -5в и -12в, к тому же, каждый БП уже оснащен защитой от перегрузки и КЗ.

Первым делом надо было восстановить БП, а поскольку дело имелось с дешевым китайским экземпляром, помимо ремонта пришлось добавлять недостающие радиоэлементы, фильтр питания и т.д. В итоге БП был отремонтирован и выдавал необходимые напряжения. Для превращения компьютерного БП в простой блок питания оставалось малое — добавить клеммы. Корпус самого БП для этого не очень годится, поэтому, было решено сделать фальшпанель.
Самый простой и бюджетный вариант который я выбрал — старый толстый лист стеклотекстолита. Вырезал лицевую панель, боковые стенки и спаял все это между собой. На тыльной стороне лицевой панели вырезал контактные площадки использовав ее одновременно как монтажную плату. Для лицевой панели распечатал надписи и наклеил сверху.


Для удобства добавил стрелочный вольтметр, с галетным переключателем, для контроля выходных напряжений, хотя в принципе, в этом и нет особой необходимости, так, для улучшений внешнего вида.

В разъеме БП, который подключается к матплате, есть все необходимые напряжения. Есть служебные контакты для запуска блока и для контроля качества напряжения.

Для запуска БП необходимо подать низкий логический уровень на контакт PS on. После старта, если напряжения в норме, на контакте Power good появляется лог — 1, с этого контакта идет сигнал на светодиод pgood, а также на светодиод подсветки стрелочного индикатора.
Ну вот и все, если Вам нужен простой блок питания, можно для этих целей приспособить и старый компьютерный.
P.S. В большинстве компьютерных БП можно организовать и регулировку напряжения, в RC цепочке задающего генератора ШИМ, можно заменить резистор на подстроечный и изменяя частоту ЗГ в небольших пределах регулировать выходные напряжения.

ССЫЛКИ:

Гальваническая развязка – это когда проводники питания радиоустройства не имеют непосредственного контакта с проводами электросети.

Как должно быть уже понятно, выпрямитель – основа БП

Таким образом, переменный ток преобразуется в постоянный – ток одного направления.

Такие схемы имеют гальваническую связь с электросетью. Опасно!

Конструктивно – более сложные. Принцип действия иной и несколько сложнее, чем у описываемых.

РЭА – радиоэлектронная аппаратура

Здесь и далее сохранена лексика и стилистика исходных материалов. Орфографию и пунктуацию я исправляю. В данном случае «составной триод» = составной транзистор.

Как регулировать выходной ток блока питания

Основа современного бизнеса — получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, — просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно — различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат — импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Читайте так же:
Угол регулировки противотуманных фар

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках «Дефект» столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все — «труба», то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак — несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель — не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает — можно делать пробный пуск и измерить все напряжения.

+3,3 В — оранжевый

плата компьютерного блока питания

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

предохранитель по входу и название блока питания LC16161D

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть — блок включится и вентилятор — индикатор включения — начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это «черный» и «зеленый». Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

перемычка для запуска блока питания типа ATX

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Читайте так же:
Как отрегулировать гур на валдае

замена предохранителя

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

управляющая микросхема KA7500 и компаратор LM393

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

выпаивание резистора между шиной +12 В и первой ножкой микросхемы KA7500

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

определение резисторов между положительными шинами и ножкой микросхемы

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

измерение напряжений

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины — 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод — вполне.

выпаивание стабилитронов защиты ZD1 и ZD2

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром — вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке — типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

проверка работы блока питания под нагрузкой

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения — достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Читайте так же:
Что регулирует гайка рулевой рейки

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор — для подбора срабатываний по току. Но получилось неважно — нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Мощный блок питания 0-30 В своими руками

Занимаясь проектированием и конструированием различных электронных схем, не обойтись без надежного блока питания с регулируемым напряжением. Сегодня предлагаются различные конструкции: как сложные, так и простые. Узнайте, как сделать блок питания от 0 до 30 В на 10 ампер своими руками по пошаговым инструкциям со схемами и фото-примерами процесса сборки.

Варианты БП для самостоятельного монтажа

Блок питания выбирают исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также узнаем, как собирать самодельные блоки питания.

Простой БП 0-30 В

Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.

Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе, благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.

Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное — подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.

Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.

В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.

Для измерения потребляемого нагрузкой тока задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.

Вольтметр можно использовать цифровой.

Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.

Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.

Мощный импульсный БП

Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для зарядки АКБ.

Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:

  1. Внутренняя схема питания, состоящая из источника напряжения на 12 В, и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.
  2. Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.
  3. Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.

Для размещения элементов схемы изготавливают печатную плату.

Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.

На Ардуино

Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.

«Умный» блок питания представлен на схеме.

Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.

Печатную плату можно сделать по образцу.

Внешний вид устройства и внутреннее расположение компонентов представлены на фото.

Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector