Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема лабораторного блока питания работа и настройка

Схема лабораторного блока питания работа и настройка

Схема лабораторного блока питания с регулировкой напряжения от 1 до 40 вольт

На биполярном транзисторе VT1 собрана схема модуля сравнения лабораторного блока: с бегунка переменного сопротивления R3 на базу первого транзистора проходит образцовое напряжение, которое задается источником образцового напряжения на радиокомпонентах VD5, VD6, HL1, R1. На эмиттерный переход VT1 поступает входное напряжение с делителя на сопротивлениях R14 и R15. В результате сравнения обоих уровней, сигнал рассогласования поступает на базу второго транзистора, который включен по схеме усилителя тока и управляет силовым транзистором VT4.

Работа лабораторного блока питания в режиме КЗ

Если произойдет случайное короткое замыкание в схеме лабораторного источника или нагрузка превысит разрешенный предел, увеличится падение напряжения на мощном сопротивление R8. В результате чего третий транзистор откроется и тем замкнет базовую цепь VT2, лимитируя нагрузочный ток на выходе блока питания. Сигнализирует о перегрузки по току светодиод HL2.

Если потребуется отрегулировать нагрузочный ток, то можно в разрыв цепи между резисторами R7 и R9 подсоединить переменное сопротивление номиналом 250 Ом, причем бегунок его нужно подсоединить к базе третьего транзистора. Нагрузочный тока можно регулировать в диапазоне от 400 мА до 1,9 А.

Трансформатор можно использовать любой с вторичной обмоткой на 20-40 вольт. Дроссель L1 можно намотать на каркас диаметром 8 мм и 120 витков провода ПЭЛ 0,6 мм.

Почти универсальным блоком может стать простой линейный БП 1,3 – 30 Вольт и токовой регулировкой от 0 до 5 Ампер, который будет работать в режиме стабилизации напряжения и тока. В случае необходимости им можно будет, как зарядить аккумуляторную батарею, так и запитать радиолюбительскую схему.

Ниже представлена схема оригинал. На ее базе мы и сделаем лабораторный блок своими руками.

Схема выполнена на операционном усилителе LM317, работающим в режиме стабилизации, которым можно регулировать вольты в интервале от 1,3 до 37 В. Работая вместе с мощным биполярным транзистором КТ818, схема может пропустить через себя приличный ток. Стабилизатор тока и ограничитель в одном лице, так называемая схема защиты БП, базируется на микросхеме LM301.

Пример такой схемы и прочитать ее работу можно в культовой радиолюбительской книге Хоровиц Хилл «Искусство схемотехники» том первый, страница 358.

В остальной схемотехнической части мы видим парочку фильтрующих конденсаторов, два диодных моста и весьма оригинальный способом включения измерительной головки. Также используется довольно устаревший транзистор КТ818.

Немного подумав, немного изменили оригинал. Повысили емкость на входе схемы, выкинули компоненты измерительной головки и добавили немного защитных диодиков. КТ818 заменили более функциональной парой недорогих транзисторов типа TIP36C, которые соединили параллельно.

Настройку и регулировку схемы блока питания необходимо осуществлять в несколько шагов: Первое включение должно быть без схемы на LM301 и составном транзисторе. Переменным резистором Р3 проверяем, как происходит регулировка напряжения. За это отвечают электронные компоненты LM317, Р3, R4 и R6, С9.

Если регулировка прошла нормально, тогда к схеме подключаем нашу пару транзисторов, желательно их подобрать с максимально близкими параметрами hFE. Для правильной работы схемы параллельно включенным биполярным транзисторам, в эмиттерной цепи должны быть балансировочные сопротивления R7 и R8. Номинал их рекомендуется подбирать, чтобы бы ток проходящий через Т1 был равен току через Т2, при этом сопротивление резисторов должно быть минимально возможным. На данном шаге к выходу самодельного источника можно подсоединить нагрузку, но ни в коем случае не устраивать режим короткого замыкания, иначе транзисторы почти сразу сгорят, скорей всего вместе с LM317.

Читайте так же:
Как регулировать свой вес при беременности

Следующим шагом подключим схему собранную своими руками на микросхеме LM301. Важно проверить, что на 4-м выводе ОУ имеется потенциал в минус 6 В. Если там плюс, то проверьте подключение диодного моста BR2 и правильность подсоединения электролитического конденсатор С2. Питание операционника LM301 можно взять с выхода БП.

Дальнейшая настройка блока сводится к подгону сопротивления Р1 под максимальный рабочий ток. Как видим, собрать эту схему лабораторного блока питания своими руками достаточно просто, главное не допустить монтажных ошибок.

Мной был использован для схемы старый советский трансформатор ТПП 306-127/220-50 между выводами 3 и 4, 8 и 9 его вторичных обмоток 20 Вольт, при токе до 2,56 А, включив их параллельно получим уже 5,12 А

Конструкцию БП разместил на нескольких макетных платах и запихнул в подходящий самодельный корпус.

Чуть позже в голову пришла идея модернизировать схему и немного расширив рабочий интервал напряжений от 0 В. В принципе, схема лабораторного источника дополнилась лишь небольшим количеством радио компонентов.

Как видим на схеме, , та же микросборка LM317 усиленная парой мощных биполярников TIP36C, ограничение и токовая стабилизация также выполнено на LM301. Но добавился стабилизатор 7905 и дополнительный делитель состоящий из резисторов R9 и Р4, который формирует отрицательный потенциал на 1,2 В.

Для регулировки вольтажа с помощью операционного усилителя LM317 он нуля вольт на такой схеме лабораторного блока питания используем опорное стабилизированное напряжение минус 1,2 Вольта.

С учетом того, что отрицательное питание LM301 в нашей схеме и так стабилизированное с помощью стабилизатора 7905, то нам нужно дополнить конструкцию только делителем состоящий из R9 и Р4. А с помощью Р4 уже можно легко получить нужные нам — 1,25 В.

Диоды D3 и D4. D3 защищают вход блока от всплесков обратной полярности, т.к. работа устройства будет происходить в разных условиях эксплуатации. Диод D4 защищает выход микросхемы LM317 от неприятной ситуации, когда потенциал на выходе LM317 превышает напряжение на ее входе.

С помощью резистора Р2 будет доступен токовый интервал от 0 до 5 А.

Для тонкой настройки тока и напряжения можно добавить переменные сопротивления номиналом около 5% от основного регулятора. Например, с Р3 можно последовательно подсоединить переменное сопротивление на 220 Ом, а с Р2 — резистор на 20 кОм.

Чертеж печатной платы в формате Sprint Layout можно взять здесь:

Основа первой схемы лабораторного блока питания является операционный усилитель TLC2272. Выпрямленное напряжение 38 вольт проходя через фильтрующий конденсатором попадает на параметрический стабилизатор. Он собран на транзисторе VT1, диоде VD5 и конденсаторе С2 и сопротивлениях R1, R2. Через этот стабилизатор включен операционный усилитель.

Диоды VD5 и VD8 устанавливать не обязательно Сопротивление резисторов R1 и R5 можно увеличить в три раза. Транзистор VT6 лучше установить кремниевый, например, КТ818В или КТ818Г. Между выводами 7, 1 микросхем DA1 и DA2 и общим проводом желательно установить керамические конденсаторы емкостью 0,1 мкф. Современной заменой транзисторов МП114 и П309 в данном устройстве могут служить КГ502В, КТ502Г и КГ503В, КТ503Г соответственно. Для уменьшения мультипликативных помех каждую половину вторичной обмотки трансформатора Т1 полезно зашунтировать конденсатором емкостью 0,47 мкф.

Читайте так же:
Как регулировать фары на приобрел

Наглядное пошаговое руководство по переделки компьютерного БП в мощный лабораторный.

Схема его очень проста, но обеспечивает получение переменного напряжения в диапазоне от 2 до 28В и постоянного напряжения от 3 до 37В. Сетевое напряжение, коммутируемое включателем SA1, через понижающий трансформатор Т1 с многоступенчатой вторичной обмоткой поступает на переключатель SA2, которым выбирается нужный уровень выходного напряжения. Тумблер SA3 служит для включения постоянного или переменного напряжения. При выбранном положении "Переменное" напряжение поступает, на контакты Х2 с включенных секций вторичной обмотки Т1. В положении SA3 "ПОСТ" напряжение выпрямляется диодным мостом VD1- VD4, сглаживается конденсатором С1 и подается на контакты ХЗ. По прибору PV1 контролируется выходное напряжение, светодиод HL1 сигнализирует о включении блока в сеть.

Схема простого лабороторного блока питания

Эта схема лабораторного блока питания способна работать с нагрузкой, потребляющей до 1,6 А. Конструкция имеет защиту от перегрузки и КЗ, а также защиту от возможного повышенного напряжения сети, что особенно актуально при проживании в сельской местности.

Напряжение сети через плавкий предохранитель идет на первичную обмотку понижающего трансформатора. Пониженное до 9 В напряжение со второй обмотки проходит на мостовой выпрямитель, на диодах Шотки VD2 — VD5. Пульсации напряжения сглаживаются большой ёмкостью С5, после чего идет на компенсационный стабилизатор напряжения, построенный с использованием дискретных компонентов.

Блок питания с регулируемым выходным напряжением постоянного тока от 1 до 9 В

Работа компенсационного стабилизатора: С увеличением входного напряжения или снижением тока нагрузки выходное напряжение пытается увеличиться. Из-за этого транзистор VT3 открывается сильнее, следовательно, сильнее откроется и VT1, который, шунтируя затвор-исток полевого транзистора VT2 и сопротивление канала сток-исток возрастает, напряжение на выходе стабилизатора понижается. Регулировку выходного напряжения осуществляют переменным сопротивлениемс R9. Стабилитрон VD6 защищает полевой транзистор

Тумблером SB2 выбирают диапазон выходных напряжений 1. 4 В или 2,3. 9 В. Следует отметить, что схем лабораторных блоков питания с низким выходным напряжением от 1 В немного. Тумблером SB1 задают ток срабатывания защиты. Светодиод HL3 сигнализирует о сработавшем самовосстанавливающем предохранителе. Варистор RU1 защищает трансформатор и выпрямитель от возможных всплесков сетевого напряжения.

Сверхъяркие светодиоды HL1 и HL2 говорят о том, что блок питания включен в сеть, а также, являются подсветкой вольтметра.

Вместо микросхемы L7805ACV можно использовать отечественную микросхему КР142ЕН5 А, В, МС7805, МС32267, LM330T-5,0, LM2940T-5,0, LM9073. Вместо стабилизатора L7808CV можно использовать МС7808, UVI2940-8,0

Понижающий трансформатор ТП112-3-1 с напряжением ХХ на вторичной обмотке 11 В можно заменить на ТП114-2, ТП121-17. ТПП112-6. Понижающий трансформатор типа ТПП-224М от старого импульсного блока питания от отечественного компьютера «Электроника МС».

Сборка блока питания с регулировкой тока/напряжения своими руками

Вот очередная версия лабораторного блока питания с напряжением от 0 до 30 В и регулировкой потребляемого тока 0-2 А, что всегда бывает полезно, когда используется БП для настройки самодельных схем или когда они неизвестные приборы запускаются в первый раз.

Схема ИП с регулировкой тока и напряжения

Сама схема питания , это популярный комплект из таких элементов:

  1. Сам регулируемый стабилизатор, в котором заменен T1 , BC337 на BD139, T2 , BD243 на BD911
  2. D1-D4 , диоды 1N4001 заменены на RL-207
  3. C1 , 1000 мкФ / 40 В заменен на 4700 мкФ / 50 В
  4. D6, D7 , 1N4148 на 1N4001
Читайте так же:
Что нужно для регулировки клапанов на сенс

У используемого трансформатора есть напряжения: 25 В, 2 А и 12 В, которое полезно для управления вентилятором, охлаждающим радиатор и силовые диоды на панели. Для этого была создана небольшая плата с мостовым выпрямителем, фильтрующими конденсаторами и стабилизатором LM7812 (с радиатором).

Внутри корпуса лабораторного источника питания размещены трансформатор, плата самого регулируемого блока питания, платы стабилизаторов , 12 В и 24 В, радиатор с охлаждающим вентилятором (запускается при 50 С).

На передней части корпуса установлены выключатель, три светодиода, информирующих о состоянии блока питания (сеть 220 В, включение вентилятора и защита , ограничение тока или короткое замыкание), синие и красные LED дисплеи с наклеенной на них затемняющей пленкой. Рядом с дисплеями расположены регулирующие потенциометры, а справа выводы питания. На задней части корпуса имеется разъем для сети, предохранитель и охлаждающий вентилятор 60&#215,60 мм.

Регулируемый блок питания 0-50 вольт

Что касается индикаторных дисплеев, они показывают:

  • синий , текущее напряжение в вольтах V
  • красный , текущий ток в амперах A

Источник питания получился реально удобный и надёжный. Вся сборка заняла несколько дней. Что касается охлаждения, оно включается только при высокой нагрузке и то на короткое время, примерно на пару минут.

С этим БП удобно работать даже при слабом освещении, так как яркости индикаторов хватает с головой. Если хотите повысить ток до 3-4 ампера, выбирайте трансформатор по-мощнее и транзисторы регулятора, с хорошим запасам по току. Ещё пару неплохих схем источников питания смотрите по ссылкам:

Лабораторный блок питания с регулировкой по высокой стороне

Лабораторный блок питания с регулировкой по высокой стороне

Просматривая кучу видео про лабораторные блоки я всегда видел одно и тоже. Сначала стоит простой блокпитания который понижает сетевое напряжение до определенного уровня а за ним ставят DC/DC преобразователь который уже производит регулировку тока и напряжения. И тут я подумал почему бы не сделать регулировку прямо по высокой стороне и таким образом уменьшить размеры и увеличить кпд ?

Но не все так просто, в ходе построения столкнулся с кучей проблем. Удалось побороть почти все, осталась одна хотя незначительная — но проблема. Именно поэтому я сделал плату методом ЛУТ, а не заказывал ее у китайских производителей, а значит данный проект сможет повторить любой желающий.

Однако обо всем по порядку. И так начнем с самого начала — с идеи. Она была простая, нужно сделать достойный
блок с минимальным количеством деталей. В первую очередь я начал искать схожие решения в интернете. Что-то похожее нашлось на сайте радио-кот, но на мой взгляд деталей в этой схеме очень много.

Лабораторный блок питания с регулировкой по высокой стороне

Схема блока питания

Родилась вот такая схема. В принципе все должно было работать. Была нарисована и изготовлена печатная плата.
И вот тут я наступил на грабли. Блок стартовал, но при попытке уменьшить напряжение я получал ужасный писк и
перегрев транзисторов.

Это писк при низком напряжении. Все дело в том, что когда на выходе установлено напряжение от 0,6 до 2,5 вольт.
Управляющим импульсам просто некуда уменьшаться и микросхема начинает их пропускать. Следовательно понижается частота и мы начинаем слышать как работает блок. Это по сути не страшно при таком заполнении насытиться сердечник вряд ли сможет. Но нужно решать проблему.

Читайте так же:
Регулировка клапанов мотоцикл урал м 67 36 мотоцикл

Какие же есть варианты решения? Самое простое это установить резистор — нагрузку. Но у нас регулируемый блок и поэтому при напряжении в 30 вольт он может просто перегореть. Решение номер два — уменьшить количество витков дросселя. Таким образом он будет меньше накапливать энергии и следовательно импульсы должны возрасти. На данном решении я не остановился. Это так называемый костыль. Есть решение гораздо лучше — я его с радостью использовал, мне лень было уже в пятый раз переделывать плату.

Схема подключения кулера

Решение это называется — динамическая нагрузка. Она позволяет задать одино и тоже потребление при низком и высоком напряжении.

Как видим деталей очень мало а функционал полноценного блока питания. Принцип работы очень прост. Дежурка дает нам питание для tl494 она начинает формировать импульсы которые поступают на трансорматор, который гальванически развязывает низкую сторону от высокой.

Схема дежурного питания

Выпрямленное напряжение трансформатора поступает на делитель напряжения
На втором входе усилителя расположен регулируемый делитель напряжения с помощью которого мы и задаем выходное напряжение.

Точно так же работает и ограничения по току

Входной дроссель защищает сеть от помех издаваемых самим блоком.

Источник Open Frime TV

Год: 2019
Формат: jpg / lay6 / mp4
Размер: 55,6 мб

Скачать Лабораторный блок питания с регулировкой по высокой стороне

Лабораторный блок питания

Для питания различных схем нужны разные блоки питания с разными напряжениями и токами, для таких целей в мастерской необходим регулируемый блок питания, то есть лабораторный блок питания. Цены на такие устройства довольно внушительны и поэтому придется собирать лабораторный блок питания своими руками. Из того что у меня есть в закромах получится неплохой прибор с выходом до 18В и током до 2.5А, для индикации подойдет только что пришедший с Китая цифровой вольтметр, но обо всем по порядку.

Во первых максимальные выходные параметры были выбраны в связи с имеющимся свободным трансформатором от стерео колонок 2*17В 2А. обмотки подключены параллельно. После диодного моста с конденсаторами напряжение подрастет примерно до 24В. Надо учитывать, что напряжение должно быть с запасом. Падение на транзисторах несколько вольт плюс под нагрузкой еще просядет на несколько вольт, чистыми останется 19В поэтому 18В это стабильный максимум, что можно выжать. Нагрузка в 2,5А выбрана так, что бы сильно не нагружать обмотки трансформатора, в таком режиме трансформатор будет себя лучше чувствовать, потому что нагружен будет на 70-80%. Чем питать разобрался, теперь что что питать

Схема ПиДБП 14

Теперь пора выбрать схему для лабораторного блока питания. Схема была выбрана, собрана и опробована, это простой и доступный лабораторный блок питания (ПИДБП) V14.Схема была взята с форума Паяльника и немного переделана под свои выходные напряжения и токи

На DA1.3 собран индикатор перегрузки по току. Когда идет ограничение по току, этот индикатор указывает об этом
Для измерения тока нагрузки на DA1.4 собран усилитель напряжения пересчитанный на усиление в 5 раз. Когда нагрузка максимальна на резисторе R20 падение 0,5В, это напряжение усиливается и на выходе ОУ напряжение, равное по значению току потребления.

Читайте так же:
Устройство и регулировка карбюратора к 127

Ну и на первых двух компараторах собрано сердце схемы. Это стабилизатор тока управляющий стабилизатором напряжения. Я собирал нечто похожее, только в схеме управление током и напряжением было независимо. Подробно описывать как работает последовательное включение стабилизаторов не буду, можете почитать о параллельном в статье простое зарядное устройство своими руками, принцип работы схож.
В схеме были пересчитаны R12R14 для выходного напряжения в 18В, а R11 для регулировки напряжения был заменен на 5к. R20 пересчитан на ток 2,5А, при максимальном токе на R20 должно быть падение 0,5В. R20 рассчитывается по простой формуле из закона Ома R20=0.5(В)Iмакс(А)

Что бы схемку сделать немного практичней добавил схемку защиты от короткого замыкания и переполюсовки. Эта схема хорошо себя зарекомендовала и леплю её куда попало))
Короче определился, что где буду использовать. Собрал все компоненты в кучу, развел печатную плату и все распаял

ПиДБП на печатной плате

Как видно выходные транзисторы использовал КТ803А в параллельном включении. Общая рассеиваемая мощность 120Вт, максимальный ток 20А напряжение пробоя 60В. Оба транзисторы выведены проводами на общий радиатор за пределы корпуса. Кстати корпус использовал от старой пластиковой музыкальной колонки

КТ803А в параллельном включении

Передняя панель в SPL6

Печатная плата готова, корпус есть. транзисторы на радиаторе. Пришло время окончательно определиться какие задачи будут выполняться лабораторным блоком питания и развести переднюю панель. Панель буду рисовать в SPL6.

На панеле размещу вольтметр, регулятор напряжения и тока.
Переключатель измерение вольт и ампер.
Два индикатора перегрузка и защита от КЗ
Переключатель между выходом с диодного моста и выходом ЛБП
Переключатель между ЛБП и зарядным. Минусовой выход либо с ЛБП либо с защиты от переполюсовки и кз
Теперь зная что где будет, можно сложить общую схему лабораторного блока питания и раскидывать косы проводов от платы к передней панеле. Вот что вышло

Схема блоков лабораторного блока питания
Подготовка проводов в блок питанияДумаю пора собирать все в корпус
Установка приборов управленияВот фото платы собранной окончательно
Печатная плата лабораторного блока питания
А вот так все выглядит в корпусе.
Лабораторный блок питания в корпусе

Лабораторный блок питания в корпусе

Первое включение лабораторного блока питания

После сборки всего в корпус можно попробовать включить лабораторный питальник в розетку. На выходе 18,5В
Первое включение лабораторного блока питания под нагрузкой 50% в качестве нагрузки двигатель от шуруповерта 12В. Кстати по индикатору перегрузка видно, что блок питания в режиме ограничения тока. На индикаторе ток потребления 1,28А

Первое включение лабораторного блока питания под нагрузкой 50%

Вот такой лабораторный блок питания у меня получился

переделанный вольтметр

В качестве индикатора использовал вольтметр из Китая, предварительно его переделав. Вольтметр указывал тоже напряжения от которого питался, я решил разделить эти каналы, что бы была возможность измерять от 0В до 20В. Я убрал резистор соединяющий контакты питания и измерения напряжения, он помечен красным на фото. Запитал индикатор от опорного напряжения схемы 12В

Такой вольтметр можно заказать на AliExpress. вот ссылка

Если нужны результаты испытаний этого блока, пожалуйста напишите в комментариях.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector