Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Небольшое тестирование резистора для компьютерного 4-pin вентилятора. Делаем потише часть 2

Небольшое тестирование резистора для компьютерного 4-pin вентилятора. Делаем потише часть 2.

Всем приветы! Недавно на обзоре были резисторы для 3-пин вентилятора, и я горевал, что на 4-пин долго идут, оказалось, что они немного потерялись в почтовом отделении и тупо лежали там 2 недели. Поэтому восполняем пробел в проблеме тишины ПК. Встречаем, резистор для 4-пинового компьютерного вентилятора! Погнали!

Посылка шла около 5-6 недель. В почтовом пакете, был пакетик с клейкой полосой. А внутри насыпом наши 8 резисторов.






Если верить маркировке резистора, то у нас тут 27 Ом, в описании 47.3 Ом: Замерил тестером получил 26.2 Ом, но тестер все такой же престарелый.

4-пиновые вентиляторы регулируются проще и чаще плавнее, нежели 3-пиновые. И при подключении 4-пинового вентилятора к такой же колодке на материнке, проблем обычно не возникает, настрой регулировку и все.

Но все же если низ диапазона вас не устраивает, резистором можно подвинуть его весь в меньшую сторону и приглушить вентилятор.

Проблема невозможности старта и дребезг никуда не уйдет и она ляжет на ваши плечи.

Если подключите 4-пин вентилятор к 3-пин колодке, то регулировка будет только за счёт изменения напряжения, а это уже должна уметь материнка, помните об этом.

Стенд у нас тот же, а вот подопытные у нас другие соответственно другие. Вот очередь и дошла до вентилятора от перформы. Ещё будут пара вентиляторов от систем охлаждения процессоров на 80мм и 90мм.

Комплектный к Zalman CNPS10X Performa 120мм вентилятор ZP1225ALM.

Кулер на AM3 от почти почившей GlacialTech, а ведь когда-то были охрененные бюджетные охлады, почти лучше за свои деньги.

Кулер на 1151, на вентиляторе кроме DeepCool нет ничего, сзади глухая пластиковая спина.

Перейдем к тестам:

Узнавать об оборотах будем через AIDA64, вентиляторы подключались к материнской плате к разъему SYS_FAN, все регулировки оборотов выключены.

Без резистора:

1 резистор:

2 резистора:

3 резистора:
Вентилятор не завелся без посторонней помощи. И тут пришел бы на помощь я думаю пусковой кондер, о котором говорили в прошлом обзоре, который помог бы стартануть.

Еще я нашел у себя вроде бы даже комплектный RC24P к перформе:

Попробуем с ним:

1 резистор RC24P:

2 резистора RC24P+обозреваемый:

3 резистора:
Вентилятор не завелся без посторонней помощи.

Без резистора:

1 резистор:

2 резистора:

3 резистора:

Без резистора:

1 резистор:

2 резистора:

3 резистора:

Выводы такие же, как и в первой части. Резисторы обороты уменьшают, а с ними и шум. Эти тоже у меня не грелись ни на одном из вентиляторов, но напомню, что это все индивидуально. Это простое, недорогое, рабочее решение. Но к прошлому обзору было полно годных идей и решений, как сделать и лучше и иначе этот я думаю ждёт та же учесть. Есть смысл сходить в комментарии тем, кого интересуют различные варианты схем управления/удушения вентиляторов. В целом комменты будут полезнее самого обзора, но это даже к лучшему, должны же быть он к какому-то топику привязаны.

Простейший регулятор для вентилятора постоянного тока

Вентиляторы могут использоваться для охлаждения схем, но постоянное вращение при номинальном напряжении приводит к механическом износу, прежде всего, подшипников. Включая вентилятор лишь по мере необходимости, и на скорости, соразмерной температуре, можно существенно продлить срок его жизни, так же, как и срок жизни охлаждаемой им аппаратуры.

Вебинар «Новые решения STMicroelectronics в области спутниковой навигации» (17.11.2021)

Простейшая схема управления лишь включает и выключает вентилятор, но расплатой за простоту являются коммутационные помехи по питанию и высокие механические нагрузки на вентилятор. Пропорциональные контроллеры, безусловно, более элегантны. Они включаются при переходе температуры через определенный порог, увеличивают скорость вращения по мере роста температуры, плавно снижают скорость, когда схема начинает остывать, и, наконец, останавливаются совсем.

Читайте так же:
Регулировка сход развала в ясенево

Однако, большинство пропорциональных регуляторов скорости вращения вентиляторов неоправданно сложны, поскольку охлаждение схем – задача далеко не из области точных наук. Предлагаемая на Рисунке 1 схема ничуть не менее эффективна, чем навороченные регуляторы, и много раз с успехом использовалась. Для схемы необходимы только термисторный датчик температуры, MOSFET транзистор, резистор и конденсатор для блюстителей схемотехнической нравственности. Предполагается, что термистор имеет отрицательный температурный коэффициент. Если вы располагаете термистором с положительным коэффициентом, поменяйте его местами с резистором R1.

Простейший пропорциональный регулятор для вентилятора постоянного тока можно сделать на термисторе и MOSFET транзисторе.

При комнатной температуре напряжение на затворе транзистора ниже типового порогового уровня Vgs(th), ток стока отсутствует, и вентилятор выключен. По мере роста температуры, сопротивление термистора падает, напряжение Vgs(th) растет, и транзистор начинает открываться. При достаточно высокой температуре транзистор входит в насыщение, и вентилятор начинает вращаться с максимальной скоростью. Практически получается, что интервал температур, в котором вентилятор из выключенного состояния достигает максимальной скорости, равен приблизительно 5 °C.

Пороговая температура, при которой начинается вращение вентилятора, устанавливается резистором R1. Для примера, пороговое напряжение затвора MOSFET транзистора NTD4959NH фирмы ON Semiconductor равно 2.0 ±0.5 В. Сопротивление RТЕРМ термистора ERTJ1VR103H производства Panasonic при температуре 25 °C имеет типовое значение 10 кОм. Чтобы установить порог 40 °C при напряжении питания вентилятора 12 В, сопротивление резистора должно быть:

Взяв типовое значение Vgs(th) = 2 В и сопротивление термистора при 40 °C RТЕРМ = 5.067 кОм (из справочных данных), находим ближайшее значение в ряду 1% резисторов R1 = 1.00 кОм.

Вследствие технологического разброса пороговых напряжений Vgs(th), температура включения также будет иметь разброс от экземпляра к экземпляру. При небольшом объеме производства проблему можно решить, заменив R1 подстроечным резистором. Но это увеличит цену изделия, поэтому, возможно, вам придется просто смириться с этим фактом.

По счастью, N-канальные MOSFET транзисторы имеют отрицательный температурный коэффициент напряжения порога, что, отчасти, компенсирует последствия разброса Vgs(th). Тем не менее, необходимо убедиться, что разброс температур включения будет приемлем для вашей системы.

Двигаясь в обратном направлении, от крайнего верхнего к крайнему нижнему значению указанного в справочных данных порогового напряжения Vgs(th), рассчитаем диапазон пороговых температур для наихудшего случая:

Vgs(th)мин. = 1.5 В и R1 = 1.00 кОм

Таким образом, вентилятор начнет вращаться при

RТЕРМ = 1.00 кОм × (12 В – 1.5 В)/1.5 В = 7.00 кОм,

что, согласно справочным данным, произойдет при температуре 33 °C. Аналогично, при самом большом пороговом напряжении, вращение вентилятора начнется при сопротивлении термистора 3.80 кОм и температуре 46 °C. Поскольку пороговое напряжение большинства MOSFET транзисторов будет располагаться вблизи середины указанной в справочнике зоны разброса, мы вправе ожидать, что температура включения вентилятора в крупных партиях изделий будет находиться в диапазоне 40 ±3 °C.

Теперь, несколько аспектов, на которые следует обратить внимание. Прежде всего, схема применима только к небольшим вентиляторам постоянного тока. Для больших вентиляторов, или массивов вентиляторов, схема будет неэффективной, а с вентиляторами переменного тока вовсе неработоспособной. Далее, необходимо посмотреть в справочных материалах на вентилятор, способен ли он работать в режиме периодического включения. Как правило, большинство вентиляторов на это рассчитаны. Но иногда требуется, чтобы скорость не падала ниже определенного минимального значения. В таком случае, поставьте резистор параллельно MOSFET транзистору.

И, наконец, нельзя забывать о том, что при средней скорости вращения вентилятора, MOSFET транзистор работает в линейном режиме и может рассеивать значительную мощность. Поскольку такое происходит только при вращении вентилятора, самым простым решением будет размещение транзистора на пути воздушного потока.

Читайте так же:
Ускорительный насос карбюратора солекс регулировка

Замена вентилятора и снижение тока с помощью резистора

В стандартном блоке питания установлен обычный вентилятор на 12В размерами 80х80мм, который можно отключить и поставить вместо него аналогичный или более тонкий и медленный 80мм вентилятор, который, в свою очередь, желательно переставить на 5 вольт.
Снижение тока с помощью резистора
Более грамотное решение — снижение тока с помощью резистора, включенного в разрыв провода питания вентилятора. Суть этого метода заключается в том, что на красный провод припаивается постоянное сопротивление или переменный резистор, при этом можно будет самостоятельно отрегулировать соотношение шумохлаждение. Номинал устанавливаемлого постоянного резистора зависит от мощности вентилятора и степени снижения оборотов — для типовых кулеров применимы резисторы от 10 до 75 Ом мощностью 0,25 Вт.
Достоинства: дешевизна, хороший дизайн (не требуется прокладывать провода или занимать розетку), низкий шум. Недостатки:

нужно найти подходящее сопротивлениерезистор,
необходимость в качественной пайке,
сопротивление довольно сильно нагревается в процессе работы, следовательно, в блоке питания где и так уменьшается эффективность охлаждающей системы, появляется источник дополнительного тепла совсем ни к чему
шум всё-таки остается, хотя и становится намного тише.

Алгоритм установки резистора:

Выключить компьютер
Развинтить корпус блока питания.
Найти среди двух проводов, идущих к крыльчатке плюсовой провод (обычно красный) и перерезать его (удобнее всего по середине)
Впаять переменный резистор
Медленно прокручивать вариатор резистора, пока не будет при включении обнаружено вращение крыльчатки без посторонней помощи
Желательно часа 3-4 погонять блок питания, изредка проверяя пальцем его температуру. При обнаружении перегрева следует уменьшить сопротивление.
Выключить питание, выпаять резистор и измерить его сопротивление
Подобрать такой же резистор, только с постоянным сопротивлением и впаять его на то место, где был переменный
Изолировать места спайки и собрать блок питания

Подобный способ применяется не только на любительском уровне: промышленно выпускаются переходники, обычно там используется резистор 10 Ом, который снижает обороты незначительно. Недостаток — сильное ограничение пускового тока вентилятора. В один прекрасный момент забившийся пы лью подшипник может не позволить ротору сдвинуться с места.

Опытные пользователи рекомендуют при установке резистора в разрыв провода питания вентилятора не экономить на его мощности. Простейший расчет показывает, что, например, для того, чтобы запитать типичный процессорный вентилятор с током потребления 200-370 мА от пониженного резистором напряжения 6-7 вольт, его мощность следует выбирать не менее 6В*200мА=1,2 Вт (то есть резистор на 2Вт — это фактически необходимый минимум, хотя иногда можно обойтись и одноваттным резистором).
Более корректное решение — включение в разрыв цепи питания вентилятора стабилитрона с напряжением стабилизации 3–6 В. Подбором типа стабилитрона можно выбрать нужные обороты, при этом сохраняется и большой пусковой ток, и работоспособность схемы контроля оборотов. Мощность стабилитрона следует выбирать не менее 1-2 Вт (в зависимости от вентилятора) и на предельный ток до 0,3-0,5 А (такие стабилитроны обычно имеют немалые габариты). Более логично здесь взять маломощный стабилитрон и "усилить" его ток при помощи простейшей транзисторной схемы.

Реобас — промышленное устройство, использующее переменные резисторы, и служащее для плавного изменения скорости вращения вентилятора, а следовательно, регулирующее не только производительность вентилятора, но и уровень шума и вибрации. В этих устройствах используются реостаты, что позволяет плавно регулировать напряжение, подаваемое на устройство. Но, несмотря на то, что все устройства работают по одному принципу, они очень сильно различаются.
Например, реобас Cooler Master Musketeer имеет расположенные на лицевой панели три аналоговых индикатора, на которые выводится информация о напряжении, подаваемом на вентилятор, уровне звукового давления и температуре в точке, куда помещён термодатчик. Также присутствуют два ползунка — первый отвечает за изменение напряжения, а второй за уровень громкости соответствующего выхода звуковой карты. Диапазон вольтметра колеблется от 0 до 12 вольт, но напряжение регулируется в пределах от 6 до 11 вольт. Диапазон измерителя уровня звука колеблется от –20 до +3 дБ. Температура отображается в пределах от 10 до 90 градусов по Цельсию. В комплект также входит удлинитель провода кулера, переходник с трёхконтактного разъёма на четырёхконтактный (это позволяет подключать к реобасу не вентилятор, а, к примеру, неоновую лампу — при регулировке напряжения, подаваемого на лампу, наблюдается явление — начинает светиться не вся лампа, а её часть).

Использование подобных решений обязательно требует наличие программ мониторинга, контролирующих вентиляторы. Если монитор системной платы плохо совместим с низкооборотным вентилятором, необходимо обновить BIOS: большинство производителей добавили в последнее время поддержку низкооборотных кулеров.
Следовать описанным выше рекомендациям нужно с осторожностью:

Читайте так же:
Как регулировать сцепление на мотоцикле планета 5

не все компьютерные вентиляторы могут уверенно стартовать при напряжении 5В, то есть запитав такой пропеллер от 5В можно лишиться обдува вообще;
перевод вентиляторов на постоянное питание от 5 или 7 вольт чреват резким ухудшением теплового режима работы компьютерных компонентов при длительной активной работе. Гораздо разумнее здесь применить автоматическую регулировку скорости вращения в зависимости от текущей температуры критических компонентов;
если ставить резистор в разрыв провода питания вентилятора, то экономить на его мощности не стоит. Простейший расчет показывает, что, например, для того, чтобы запитать типичный процессорный вентилятор с током потребления 200-370 мА от пониженного резистором напряжения 6-7 вольт, его мощность следует выбирать не менее 6В*200мА=1,2 Вт (то есть резистор на 2Вт — это фактически необходимый минимум, хотя иногда можно обойтись и одноваттным резистором);
аналогичные расчеты мощности справедливы и для стабилитрона — его следует выбирать на мощность не менее 1-2 Вт (в зависимости от вентилятора) и на предельный ток до 0,3-0,5 А (такие стабилитроны обычно имеют немалые габариты). Более логично здесь взять маломощный стабилитрон и "усилить" его ток при помощи простейшей транзисторной схемы.

‹ Основные методы уменьшения шума
Вверх
Обслуживание вентилятора ›

Регулировка оборотов электродвигателя 220В, 12В и 24В

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор – регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Способы изменения вращения зависят от модели электрической машины. Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

Простейший вариант

Простейший вариант изменения оборотов электродвигателяЛегче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

В цепи якоря

Схема подключения цепи якоря к источнику напряжения

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Читайте так же:
Как отрегулировать реле давления воздуха

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

Схема «двигатель-генератор»

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Схема для низкого напряжения

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Схема со стабилизацией оборотов независимо от нагрузки на валу

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Схема со стабилизацией оборотов независимо от нагрузки на валу на 24В

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

От сети

Однофазные электродвигатели переменного тока также позволяют регулировать вращение ротора.

Коллекторные машины

Схема для изменения оборотов на коллекторных машинах

Такие моторы стоят на электродрелях, электролобзиках и другом инструменте. Чтобы уменьшить или увеличить обороты, достаточно, как и в предыдущих случаях, изменять напряжение питания. Для этой цели также есть свои решения.

Конструкция подключается непосредственно к сети. Регулировочный элемент – симистор, управление которого осуществляется динистором. Симистор ставится на теплоотвод, максимальная мощность нагрузки – 600 Вт.

Если есть подходящий ЛАТР, можно все это делать при помощи его.

Двухфазный двигатель

Схема на двухфазный двигатель

Аппарат, имеющий две обмотки – пусковую и рабочую, по своему принципу является двухфазным. В отличие от трехфазного имеет возможность менять скорость ротора. Характеристика крутящегося магнитного поля у него не круговая, а эллиптическая, что обусловлено его устройством.

Есть две возможности контролирования числа оборотов:

  1. Менять амплитуду напряжения питания (Uy),
  2. Фазное – меняем емкость конденсатора.

Такие агрегаты широко распространены в быту и на производстве.

Обычные асинхронники

Электрические машины трехфазного тока, несмотря на простоту в эксплуатации, обладают рядом характеристик, которые нужно учитывать. Если просто изменять питающее напряжение, будет в небольших пределах меняться момент, но не более. Чтобы в широких пределах регулировать обороты, необходимо довольно сложное оборудование, которое просто так собрать и наладить сложно и дорого.

Схема работы преобразователя частоты

Для этой цели промышленностью налажен выпуск частотных преобразователей, помогающих менять обороты электродвигателя в нужном диапазоне.

Асинхронник набирает обороты в согласии с выставленными на частотнике параметрами, которые можно менять в широком диапазоне. Преобразователь – самое лучшее решение для таких двигателей.

Читайте так же:
Карбюратор к88а регулировка экономайзера

Выбираем устройство

Для того чтобы подобрать эффективный регулятор необходимо учитывать характеристики прибора, особенности назначения.

  1. Для коллекторных электродвигателей распространены векторные контроллеры, но скалярные являются надёжнее.
  2. Важным критерием выбора является мощность. Она должна соответствовать допустимой на используемом агрегате. А лучше превышать для безопасной работы системы.
  3. Напряжение должно быть в допустимых широких диапазонах.
  4. Основное предназначение регулятора преобразовывать частоту, поэтому данный аспект необходимо выбрать соответственно техническим требованиям.
  5. Ещё необходимо обратить внимание на срок службы, размеры, количество входов.

Прибор триак

Устройство симистр (триак) используется для регулирования освещением, мощностью нагревательных элементов, скоростью вращения.

Схема прибора триак

Схема контроллера на симисторе содержит минимум деталей, изображенных на рисунке, где С1 – конденсатор, R1 – первый резистор, R2 – второй резистор.

С помощью преобразователя регулируется мощность методом изменения времени открытого симистора. Если он закрыт, конденсатор заряжается посредством нагрузки и резисторов. Один резистор контролирует величину тока, а второй регулирует скорость заряда.

Когда конденсатор достигает предельного порога напряжения 12в или 24в, срабатывает ключ. Симистр переходит в открытое состояние. При переходе напряжения сети через ноль, симистр запирается, далее конденсатор даёт отрицательный заряд.

Преобразователи на электронных ключах

Тиристорные регуляторы мощности являются одними из самых распространенных, обладающие простой схемой работы.

Тиристор ку202н и его схема

Тиристор, работает в сети переменного тока.

Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.

Схема стабилизатора постоянного тока

Схема стабилизатора постоянного тока

Зарядное устройство 24 вольт на тиристоре

Зарядное устройство 24 вольт на тиристоре

Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.

Процесс пропорциональных сигналов

Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.

Микросхема TDA 1085

Микросхема TDA 1085

Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.

Своими руками можно сделать прибор для гриндера, токарного станка по дереву, точила, бетономешалки, соломорезки, газонокосилки, дровокола и многого другого.

Микросхема U2008B

Промышленные регуляторы, состоящие из контроллеров 12, 24 вольт, заливаются смолой, поэтому ремонту не подлежат. Поэтому часто изготавливается прибор 12в самостоятельно. Несложный вариант с использованием микросхемы U2008B. В регуляторе используется обратная связь по току или плавный пуск. В случае использования последнего необходимы элементы C1, R4, перемычка X1 не нужна, а при обратной связи наоборот.

При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.

Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!

Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.

Измерения

Понятно, что число оборотов нужно как-то определять. Для этого используют тахометры. Они показывают число вращения на данный момент. Обычным мультиметром просто так измерить скорость не получится, разве что на автомобиле.

Как видно, на электрических машинах можно менять различные параметры, подстраивая их под нужды производства и домашнего хозяйства.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector