Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение частотных границ шагового двигателя с драйвером А4988

Определение частотных границ шагового двигателя с драйвером А4988

Аверченко, А. П. Определение частотных границ шагового двигателя с драйвером А4988 / А. П. Аверченко, А. А. Молдагулова, Р. С. Нурмаганов. — Текст : непосредственный // Молодой ученый. — 2019. — № 47 (285). — С. 108-110. — URL: https://moluch.ru/archive/285/64326/ (дата обращения: 02.11.2021).

В современном мире все большую популярность приобретают устройства, в составе которых используется шаговый двигатель (ШД), это обусловлено достаточно простым управлением скоростью вращения, а также возможностью точного углового позиционирования положения вала. ШД используется в принтерах, сканерах, факсах, световом оборудовании, а также в разнообразном промышленном и специальном оборудовании, например в станках ЧПУ. Очень широкое применение ШД нашли в робототехнике, автомобилестроении.

Задача состоит в экспериментальном определении оптимальных частот переключения микрошаговых режимов двигателей. Необходимо, определить граничные частоты, при которых происходит плавный, стабильный запуск и вращение ШД, а также частоты срыва, на которой двигатель перестает, вращается стабильно. Определение частот необходимо произвести при постоянном напряжении питания драйвера 4,5В, на сам ШД подаем 16,4В. При этом граничные частоты являются рекомендованными для создания устройств на базе данных ШД и драйвера.

В исследовательской работе использовали гибридный ШД, который сочетает в себе больший удерживающий и динамический крутящий момент, чем ШД с переменным или постоянным магнитом. Ротор имеет зубцы, расположенные в осевом направлении и он разделен на две части, внутри ротора расположен цилиндрический постоянный магнит. Зубцы верхней половины являются северным магнитным полюсом, а другая половина южным. Особенность ШД в том, что он может контролировать угловое положение ротора без замкнутого контура обратной связи. [1]

Чтобы упростить процесс управления ШД существуют соответствующие драйверы. Драйвер — представляет собой электрическую цепь или другой электронный компонент, предназначенный для преобразования электрических сигналов. Драйвер используется для управления биполярным шаговым двигателем с полным шагом, половинным и микрошагом, а также для регулирования тока, протекающего через цепь и направлением вращения двигателя. В данной работе использовался драйвер, созданный на базе микросхемы А4988.

Рабочее место: генератор сигналов произвольной формы HMF 2550, источник питания ATH-1333–2 шт, шаговый двигатель MT-1703HD200AW, драйвер А4988.

ШД имеет размер шага 1,8° (что соответствует 200 шагам на оборот). Драйвер А4988 позволяет работать с микрошагом. Выбор микрошага устанавливается при помощи входов драйвера MS1, MS2, MS3, при подаче соответствующих логических уровней можно организовать пять различных шаговых режимов представленных в таблице 1.

Шаговый двигатель

Итак, мы уже рассказали, как устроен серво мотор и сегодня начнем разбирать шаговый двигатель, его схему, драйверы управления и то, где его лучше всего использовать!

Начнем мы с того, что "на пальцах" рассмотрим принцип функционирования данной железяки. Каждый шаговик имеет внутри себя несколько электромагнитов, расположенных вокруг вала. Подавая питание в нужной последовательности на каждую из них, вращающийся элемент двигателя стремится примагнититься катушке. Быстрым переключением питания между электромагнитами можно добиться большой скорости вращения вала мотора и перемещать его в любое положение с большой точностью. Однако для обеспечения этой точности используются различные вспомогательные устройства, так как такой тип двигателя имеет крайне неприятной эффект вибрации. О таких нюансах мы и расскажем далее!

Любой шаговый двигатель имеет два основных элемента: ротор (вал мотора) и статор (неподвижный корпус). Первый состоит из обычных магнитов, а второй — из электрических, управляемых катушек. Стоит отметить, что как раз за счет шагов от одной катушке к другой в шаговиках присутствует вибрация, вызванная инерцией вала мотора. Профили магнитов, принципы управления электромагнитами — все это разделяет шаговики на типы и наделяет их своими плюсами и минусами.

Разделим шаговики на 3 основных класса:

  • Переменный шаговый двигатель
    Ротор не имеет постоянных магнитов, а оснащен ферромагнитной шестерней. Это материал, который крайне эффективно магнититься, но не так сильно по сравнению с постоянным. Это приводит к проигрышу в крутящем моменте. Зато отсутствует стопорящая сила, возникающая за счет магнитного поля между корпусом мотора и ротором с постоянным магнитом, которую легко почувствовать, покрутив шаговик в выключенном состоянии (характерные щелчки).
    Движок оснащен большим количеством катушек, которые включаются попарно. Величина шага варьируется от 5 до 15 градусов.
  • Шаговый двигатель с постоянным магнитом
    Ротор такого устройства состоит из нескольких разнополюсных магнитов. Принцип разбирали в самом начале. Характерный шаг от 45 до 90 градусов.
  • Гибридный шаговый двигатель
    Как можно догадаться, данный тип совместил в себе первые два и унаследовал все плюсы. Отличительными характеристиками данного шаговика являются высокая точность (1-5 градуса), малая вибрация и приличная скорость вращения. Все хорошо, но такие штуки отличаются от своих собратьев еще и ценой! Это связано со сложностью изготовки. Но производители пошли на технологическую хитрость. Практически невозможно создать многозубцовую (скажем, 100) шестеренку, где соседние зубья будут разных полюсов.

    Но достаточно просто создать два таких диска, имеющих противоположные полюса. Затем их сдвигают так, что если посмотреть сбоку, получится то, что мы и хотели. Осталось правильным образом расположить обмотки и включать их по оптимальной логике, обеспечивающей наибольшую эффективность!
Читайте так же:
Как регулировать давление на керхере

Теперь давайте пробежимся по методам управления шаговыми двигателями. Их также можно разделить на несколько пунктов:

  • Полношаговое управление одной обмоткой
    Это самый простой вариант. Последовательно включается только одна катушка и к ней притягивается вал мотора. В таком случае крутящий момент будет меньше чем в следующем способе.
  • Полношаговое управление двумя обмотками
    Принцип такой же, как и в предыдущем случае, но теперь управление идет парой электромагнитов. Это обеспечивает максимальный крутящий момент мотора, но требует в два раза больше тока или напряжения (зависит от метода подключения катушек друг к другу).
  • Полушаговое управление
    Данная логика включения катушек позволит увеличить число шагов, а, следовательно, и точность в 2 раза! Аналогично предыдущим пунктам, можно управлять одной катушкой или парой. Вся фишка в том, что в данном случае переход на следующую катушку происходит не при полном выключении предыдущей. То есть, при работе двух соседних катушек вал мотора встает в промежуточное состояние.
  • Сверхточное управление
    Наверное, у многих после предыдущего пункта появилась мысль: а что если мы будем подавать разную мощность на две соседние катушки, меняющуюся по определенному закону, и получим еще больше промежуточных шагов? Именно так и устроены современные двигатели в сверхточных ЧПУ и прочих подобных устройствах. Хитрое управление обмотками позволяет значительно повысить точность позиционирования подобных моторов. В таких случаях используют специальные драйверы для шаговых двигателей, позволяющих осуществлять подобный режим управления.

В качестве примера в данной статье рассмотрим подключения двух шаговых двигателей к плате Arduino. Для начала рассмотрим мотор 17hs4401, которой используется в 3D принтерах. Данная модель является биполярной, то есть у нас есть две пары обмоток от которых идет 4 кабеля.

Шаговый двигатель 17hs4401 обладает большим крутящим моментом и может питаться от сети 12 V. Чтобы не перегружать нашу плату управления большими мощностями, шаговик подключается к ней с помощью специального драйвера А4988, который способен работать в жестких условиях (до 35 V и 2 А).

Слабые управляющие сигналы с Arduino идут на драйвер, а тот уже взаимодействует с 17hs4401 с более мощными параметрами по току и напряжению. К ножкам A4988 VDD и GND подводится питание логического уровня (3 — 5,5 В), к VMOT и GND — питание двигателя (8 — 35 В). Стоит отметить, что в данной системе бывают скачки напряжения, которые могут привести к поломке оборудования. Поэтому (на 3D принтерах всегда) ставят большие конденсаторы (более 47 мкФ). Драйвер имеет болт, который регулирует силу тока. Работая на предельных значениях, вы рискуете сжечь его, особенно если не наклеен радиатор, идущий в комплекте с устройством.

Шаговик 17hs4401 за полный оборот совершает 200 шагов. Это весьма неплохо, но для лучшего позиционирования (крайне важно для ЧПУ) используют схему управления с микрошагами, которую мы изучили ранее. A4988 позволяет осуществлять такую процедуру с коэффициентами 1/2, 1/4, 1/8 и 1/16 шага (комбинируя управление через выходы MS1, MS2, и MS3).

MS1MS2MS3Step
LowLowLowFull
HighLowLow1/2
LowHighLow1/4
HighHighLow1/8
HighHighHigh1/16

Пин STEP отвечает за микрошаг шаговика, DIRECTION — за направление вращения. Выводы STEP и DIRECTION не подтянуты к какому-либо конкретному внутреннему напряжению, поэтому их не стоит оставлять плавающими при создании приложений. Если требуется вращать двигатель в одном направлении,коннектим DIR с VCC или GND. Драйвер имеет три различных входа для управления состоянием питания: RESET, SLEEP и ENABLE. Вывод RESET плавает, если его не нужно использовать, то следует подключить его к SLEEP, чтобы подать на него высокий уровень и включить плату.

Теперь давайте перейдем непосредственно к подключению данного мотора к микрокомпьютеру. Соединяем контакты согласно указанной ниже схеме:

Обычно, такие моторы используются любителями при сборке 3d принтеров своими руками. Для этого используют Arduino MEGA и шилд ramps 1.4, о котором мы говорили в этой статье. Удобство использования данного комплекта состоит в том, что не нужно соединять кучу проводов — за вас уже все разведено. Таким образом, легко подключить сразу до 5 шаговиков!

Читайте так же:
Регулировка фар при сломанном корректоре

Более простым и дешевым вариантом шагового мотора является модель 28byj-48. Его подключение немного запутанное, но несмотря на это он пользуется большой популярностью у любителей собирать роботов! Поэтому мы немного расскажем о том, как 28byj-48 подключить к Arduino. В первую очередь нам понадобиться драйвер ULN2003APG. Это очень дешевая железяка, встречается как готовая плата с разъемами, так и просто чип с голыми ножками. Сначала посмотрим, как подключать второй вариант.

На данной картинке покано подключение двух шаговых двигателей к плате Arduino Nano. C обратной стороны драйвера все ножки соединяем с цифровыми пинами, кроме крайней правой — ее ведем к GND. При программировании вам потребуется осуществить настройку моторов к пинам и в этом случае необходимо указать правильную последовательность: оранжевый, синий, желтый, розовый. Именно в таком порядке необходимо будет подавать управляющий сигнал с ножек микропроцессора. Как видно на рисунке, красный провод левого коннектора не попадает на ULN2003APG — его необходимо соединить с выходом 5V или VIN.

Есть более простой способ подключения шаговика 28byj-48 через готовую плату с коннектором:

Обзор драйвера шагового двигателя DRV8825

Обзор драйвера шагового двигателя DRV8825

В предыдущей статье рассказывало о драйвере для биполярного шагового двигателя A4988, который часто используют в проектировании станков ЧПУ. В этой статье расскажу о другом драйвере DRV8825, который полностью взаимозаменяемый с драйвером A4988 и может работать с микрошагом до 1/32, напряжением до 45 В и током до 2.5 А.

Технические параметры

► Напряжения питания: от 8,2 до 45 В
► Установка шага: 1, 1/2, 1/4, 1/8, 1/16, 1/32
► Напряжение логики: 3.3 В
► Защита от перегрева: Есть
► Максимальный ток на фазу: 1.5 А без радиатора, 2.5 А с радиатором.
► Габариты модуля: 20 мм х 15 мм х 10 мм
► Габариты радиатора: 9 мм х 5 мм х 9 мм

Общие сведения о драйвере DRV8825

Основная микросхема модуля это драйвер от TI (Texas Instruments Inc.) DRV8825, которая способна управлять одним биполярным шаговым двигателем. Как говорил ранее данный драйвер полностью взаимозаменяемый с драйвером A4988. Микросхема DRV8825 может работать с выходным напряжение до 45 В и током до 1.5 на катушку без радиатора и до 2.5 А с радиатором (дополнительным охлаждением). Так же, модуль имеет внутренний стабилизатор напряжение, который напитывает логическую часть модуля напряжение 3.3 В от источника шагового питания двигателя.
Драйвер позволяет использовать шесть вариантов шага: 1, 1/2, 1/4, 1/8, 1/16, 1/32

Обзор драйвера шагового двигателя DRV8825

Распиновка драйвера DRV8825:
На драйвере DRV8825 расположено 16 контактов, назначение каждого можно посмотреть ниже:

Назначение контактов драйвера для шагового двигателя DRV8825

EN — включение и выключение модуля (0 — включен, 5 В — выключен).
M0, M1 и M2 — выбор режима микро шаг (смотрите таблицу ниже).
RST — сброс драйвера.
SLP — вывод включения спящего режима, если подтянуть его к низкому состоянию драйвер перейдет в спящий режим.
STEP — управляющий вывод, при каждом положительном импульсе, двигатель делает шаг (в зависимости от настройки микро шага), чем быстрее импульсы, тем быстрее вращаться двигатель.
DIR — управляющий вывод, если подать +5 В двигатель будет вращается по часовой стрелке, а если подать 0 В против часовой стрелки.
VMOT & GND MOT — питание шагового двигателя двигателя от 8.2 до 45 В (обязательное наличие конденсатора на 100 мкФ). Так же, нет необходим
B2, B1, A1, и A2 — подключение обмоток двигателя.
► FAULT — Выход включения защиты, если состояние «0», значит полевые транзисторы H-моста отключены в результате защиты от перегрузки по току или был перегрев.
GND LOGIC — заземление микроконтроллера.

Настройка микрошага
Драйвер DRV8825 может работать микрошаговом режиме, то есть может подавать питание на катушки с промежуточным уровням. Например, если взять двигатель NEMA17 с шагом 1.8 или 200 оборотов, в режиме 1/4, двигатель будет выдавать 800 шагов за оборот
Дня настройки микрошагов на драйвере DRV предусмотрены три выхода, а именно M0, M1 и M2. Установив соответствующие логические уровни для этих выводов, можно выбрать режим микрошага.

Установка микрошага DRV8825

Вывода M0, M1 и M2 в микросхеме DRV8825 подтянуты резистором к земле, поэтому, если не подключать их, двигатель будет работать в режиме полного шага.

Система охлаждения DRV8825
При интенсивной работе микросхемы DRV8825 начинает сильно греется и если температура превысит придельные значение, может сгореть. По документации DRV8825 может работать с током до 2.5 А на катушку, но на практике микросхема не греется если ток не превышает 1.2 А на катушку. Поэтому если ток выше 1.2 А необходимо устанавливать радиатор охлаждения, который идет в комплекте.

Читайте так же:
Заз шанс регулировка рулевой колонки есть или нет

Охлаждение DRV8825

Настройка тока DRV8825
Перед использованием мотора нужно сделать небольшую настройку, необходимо ограничить максимальную величину тока, протекающего через катушки шагового двигателя и ограничить его превышение номинального тока двигателя, регулировка осуществляется с помощью небольшого потенциометра.
Для настройки необходимо рассчитать значение напряжения Vref.

Vref = Current Limit / 2

где,
Current Limit — номинальный ток двигателя
В моем случаи, номинальный ток двигателя 17HS4401 равняется 1,7 А.

Vref = 1,7 / 2 = 0,85 В

Осталось только настроить, берем отвертку и вольтметр, плюсовой шуп вольтметра устанавливаем на потенциометр, а шуп заземления на вывод GND и выставляем нужное значение.

Настройка тока DRV8825

Подключение драйвера шагового двигателя DRV8825 к Arduino UNO

Необходимые детали:
Arduino UNO R3 x 1 шт.
► Драйвер шагового двигателя DRV8825 x 1 шт.
► Шаговый двигатель 17HS4401 x 1 шт.
► Комплект проводов DuPont 2.54 мм, 20 см x 1 шт.

Подключение:
Теперь, можно приступить к сборке схемы. Первым делом подключаем GND LOGIC к GND на Arduino. Контакты DIR и STEP подключим к цифровым контактам 2 и 3 на Arduino. Подключение шагового двигатель к контактам B2, B1, A2 и A1.

Предупреждение: Подключение или отключение шагового двигателя при включенном приводе может привести к его повреждению.

Затем необходимо подключить контакт RST к соседнему контакту SLP к 5В на Arduino, чтобы включить драйвер. Так-же контакты выбора микрошага необходимо оставить не подключенными, чтобы работал режим полный микрошаг. Теперь осталось подключить питание двигателя к контактам VMOT и GND MOT, главное не забудьте подключить электролитический конденсатор на 100 мкФ, в противном случаи при скачке напряжение, модуль может выйти из строя.

Подключение DRV8825 к Arduino

Программа:
Теперь можно приступки к программной части и начать управлять шаговым двигателем с помощью драйвера DRV8825, загружайте данный скетч в Arduino.

Шаговые двигатели

Шаговые двигатели относятся к классу бесколлекторных двигателей постоянного тока. Как и любые бесколлекторные двигатели, они имеют высокую надежность и большой срок службы, что позволяет использовать их в критичных, например, индустриальных применениях.

По сравнению с обычными двигателями постоянного тока, шаговые двигатели требуют значительно более сложных схем управления, которые должны выполнять все коммутации обмоток при работе двигателя. Выбор контроллера для управления шаговым двигателем описан в статье Контроллеры ШД. Кроме того, сам шаговый двигатель – дорогостоящее устройство, поэтому там, где точное позиционирование не требуется, обычные коллекторные двигатели имеют заметное преимущество. Справедливости ради следует отметить, что в последнее время для управления коллекторными двигателями все чаще применяют контроллеры, которые по сложности практически не уступают контроллерам шаговых двигателей.

Одним из главных преимуществ шаговых двигателей является возможность осуществлять точное позиционирование и регулировку скорости без датчика обратной связи. Это очень важно, так как такие датчики могут стоить намного больше самого двигателя. Однако это подходит только для систем, которые работают при малом ускорении и с относительно постоянной нагрузкой. В то же время системы с обратной связью способны работать с большими ускорениями и даже при переменном характере нагрузки. Если нагрузка шагового двигателя превысит его момент, то информация о положении ротора теряется и система требует базирования с помощью, например, концевого выключателя или другого датчика. Системы с обратной связью не имеют подобного недостатка.

При проектировании конкретных систем приходится делать выбор между сервомотором и шаговым двигателем. Когда требуется прецизионное позиционирование и точное управление скоростью, а требуемый момент и скорость не выходят за допустимые пределы, то шаговый двигатель является наиболее экономичным решением. Как и для обычных двигателей, для повышения момента может быть использован понижающий редуктор. Однако для шаговых двигателей редуктор не всегда подходит.

В отличие от коллекторных двигателей, у которых момент растет с увеличением скорости, шаговый двигатель имеет больший момент на низких скоростях. К тому же, шаговые двигатели имеют гораздо меньшую максимальную скорость по сравнению с коллекторными двигателями, что ограничивает максимальное передаточное число и, соответственно, увеличение момента с помощью редуктора. Готовые шаговые двигатели с редукторами хотя и существуют, однако являются экзотикой. Еще одним фактом, ограничивающим применение редуктора, является присущий ему люфт. Возможность получения низкой частоты вращения часто является причиной того, что разработчики, будучи не в состоянии спроектировать редуктор, применяют шаговые двигатели неоправданно часто. В то же время коллекторный двигатель имеет более высокую удельную мощность, низкую стоимость, простую схему управления, и вместе с одноступенчатым червячным редуктором он способен обеспечить тот же диапазон скоростей, что и шаговый двигатель. К тому же, при этом обеспечивается значительно больший момент. Приводы на основе коллекторных двигателей очень часто применяются в технике военного назначения, а это косвенно говорит о хороших параметрах и высокой надежности таких приводов. Да и в современной бытовой технике, автомобилях, промышленном оборудовании коллекторные двигатели распространены достаточно сильно. Тем не менее, для шаговых двигателей имеется своя, хотя и довольно узкая, сфера применения, где они незаменимы.

Читайте так же:
Регулировка стояночного тормоза митсубиси л200

Виды шаговых двигателей:

· двигатели с переменным магнитным сопротивлением

· двигатели с постоянными магнитами

· гибридные двигатели

Определить тип двигателя можно даже на ощупь: при вращении вала обесточенного двигателя с постоянными магнитами (или гибридного) чувствуется переменное сопротивление вращению, двигатель вращается как бы щелчками. В то же время вал обесточенного двигателя с переменным магнитным сопротивлением вращается свободно. Гибридные двигатели являются дальнейшим усовершенствованием двигателей с постоянными магнитами и по способу управления ничем от них не отличаются.

Определить тип двигателя можно также по конфигурации обмоток. Двигатели с переменным магнитным сопротивлением обычно имеют три (реже четыре) обмотки с одним общим выводом. Двигатели с постоянными магнитами чаще всего имеют две независимые обмотки. Эти обмотки могут иметь отводы от середины. Иногда двигатели с постоянными магнитами имеют 4 раздельных обмотки. В шаговом двигателе вращающий момент создается магнитными потоками статора и ротора, которые соответствующим образом ориентированы друг относительно друга.

Статор изготовлен из материала с высокой магнитной проницаемостью и имеет несколько полюсов. Полюс можно определить как некоторую область намагниченного тела, где магнитное поле сконцентрировано. Полюса имеют как статор, так и ротор. Для уменьшения потерь на вихревые токи магнитопроводы собраны из отдельных пластин, подобно сердечнику трансформатора. Вращающий момент пропорционален величине магнитного поля, которая пропорциональна току в обмотке и количеству витков. Таким образом, момент зависит от параметров обмоток. Если хотя бы одна обмотка шагового двигателя запитана, ротор принимает определенное положение. Он будет находится в этом положении до тех пор, пока внешний приложенный момент не превысит некоторого значения, называемого моментом удержания. После этого ротор повернется и будет стараться принять одно из следующих положений равновесия.

Биполярные и униполярные шаговые двигатели
В зависимости от конфигурации обмоток двигатели делятся на биполярные и униполярные. Биполярный двигатель имеет одну обмотку в каждой фазе, которая для изменения направления магнитного поля должна переполюсовывается драйвером. Для такого типа двигателя требуется мостовой драйвер, или полумостовой с двухполярным питанием. Всего биполярный двигатель имеет две обмотки и, соответственно, четыре вывода.Униполярный двигатель также имеет одну обмотку в каждой фазе, но от середины обмотки сделан отвод. Это позволяет изменять направление магнитного поля, создаваемого обмоткой, простым переключением половинок обмотки. При этом существенно упрощается схема драйвера. Драйвер должен иметь только 4 простых ключа. Таким образом, в униполярном двигателе используется другой способ изменения направления магнитного поля.

Средние выводы обмоток могут быть объединены внутри двигателя, поэтому такой двигатель может иметь 5 или 6 выводов Иногда униполярные двигатели имеют раздельные 4 обмотки, по этой причине их ошибочно называют 4-х фазными двигателями. Каждая обмотка имеет отдельные выводы, поэтому всего выводов 8. При соответствующем соединении обмоток такой двигатель можно использовать как униполярный или как биполярный. Униполярный двигатель с двумя обмоткими и отводами тоже можно использовать в биполярном режиме, если отводы оставить неподключенными. В любом случае ток обмоток следует выбирать так, чтобы не превысить максимальной рассеиваемой мощности. Если сравнивать между собой биполярный и униполярный двигатели, то биполярный имеет более высокую удельную мощность. При одних и тех же размерах биполярные двигатели обеспечивают больший момент.

6-ти выводные шаговые двигатели

Для подключения 6-ти выводного шагового двигателя к классическому биполярному драйверу может быть выбран один из двух способов — униполярное либо биполярное подключение обмоток двигателя.

Униполярное подключение

Если требуется вращать двигатель на средних и высоких скоростях (из диапазона рабочих скоростей), лучший тип подключения — использовать центральный отвод. Электрические характеристики двигателя — ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. — в этом случае равны данным, приведенным в каталоге.

Биполярное подключение

Если требуется вращать двигатель на низких скоростях (из диапазона рабочих скоростей), лучший тип подключения — биполярное. Электрические характеристики двигателя — ток обмотки, сопротивление обмотки, статический крутящий момент, индуктивность обмоток и др. — в этом случае равны данным, приведенным в каталоге. При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше. Это можно легко понять из следующих рассуждений. Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Читайте так же:
Как правильно регулировать клапана на мопеде дельта

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При последовательном включении обмоток потребляемая мощность становится Iбиполяр. 2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = Iбиполяр. 2 * 2* R, откуда

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

8-ми выводные шаговые двигатели

Для подключения 8-ми выводного шагового двигателя (то есть двигателя с четырьмя обмотками) к классическому биполярному драйверу может быть выбран один из трех способов — униполярное, последовательное либо параллельное подключение обмоток двигателя.

Если требуется вращать двигатель на средних скоростях (из диапазона рабочих скоростей), лучший тип подключения — использовать лишь две из четырех обмоток.

Наиболее эффективно для низкоскоростного диапазона рабочих скоростей двигателя.

При таком типе подключения нужно уменьшить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при последовательном включении обмоток требуемый ток — 1.4 А, то есть в 1.4 раза меньше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При последовательном включении обмоток сопротивление объединенной обмотки возрастает в два раза (2R).

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При последовательном включении обмоток потребляемая мощность становится Iпослед. 2 * 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = Iпослед. 2 * 2* R, откуда

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением ток, пропускаемого через обмотки. Но так как ток уменьшился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

Наиболее эффективно использование параллельного включения обмоток для высоких скоростей.

При таком типе подключения нужно увеличить ток, подаваемый на обмотки двигателя в √2 раз. Например, если номинальный рабочий ток двигателя составляет 2 А, то при параллельном включении обмоток требуемый ток — 2.8 А, то есть в 1.4 раза больше.

Это можно легко понять из следующих рассуждений.

Номинальный рабочий ток, указанный в каталоге, рассчитан на сопротивление одной обмотки (R — именно оно приведено в каталоге). При параллельном включении обмоток сопротивление объединенной обмотки уменьшаетсяв два раза (0.5 R).

Потребляемая мощность при униполярном включении — Iуниполяр. 2 * R

При параллельнном включении обмоток потребляемая мощность становится 0.5 * Iбиполяр. 2 * R

Потребляемая мощность не зависит от типа подключения, поэтому Iуниполяр. 2 * R = 0.5 * Iбиполяр. 2 * R, откуда Iбиполяр..= Iуниполяр. /√2, т.е.

Так как крутящий момент двигателя прямо пропорционален величине магнитного поля, создаваемого обмотками статора, то он возрастает с увеличением числа витков обмотки и убывает с уменьшением величины тока, пропускаемого через обмотки. Но так как ток увеличился в √2 раз, а число витков обмотки увеличилось в 2 раза, то крутящий момент возрастет в √2 раз.

При выборе шагового двигателя одной из важнейших характеристик является его скоростные качества, то есть зависимость момента на валу от скорости вращения. Сравнить и оценить эту характеристику можно зная значения сопротивления и индуктивности обмоток выбираемого двигателя. Чем больше соотношение R/L тем быстрее нарастает ток в обмотках и тем большую скорость вращения можно достичь без существенного падения момента. Объясняется это тем, что э квивалентная схема представляет собой последовательно соединенные индуктивность и омическое сопротивление, возникающая в цепи ЭДС самоиндукции препятствует изменению тока в цепи, замедляя его возрастание, а также спад тока при размыкании цепи. Ток не может вырасти мгновенно до номинального значения, а следовательно, крутящий момент двигателя тоже нарастает не мгновенно, а по экспоненте. При увеличении скорости вращения не только увеличивается скорость коммутации обмоток, но также уменьшается время, на которое подается напряжение на обмотку. При критической скорости ток в обмотке двигателя еще не успевает вырасти до номинального значения, а напряжение с обмотки уже снимается. Происходит снижение крутящего момента, двигатель начинает пропускать шаги.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector