Auto-noginsk.ru

Авто Ногинск
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронный регулятор напряжения синхронного генератора

Электронный регулятор напряжения синхронного генератора

Электронный регулятор напряжения (ЭРН) предназначен для регулирования напряжения синхронных генераторов большой мощности в условиях изменяющейся электрической нагрузки.

Функциональная схема ЭРН приведена на рис.1, она вклю­чает объект регулирования — синхронный генератор большой мощ­ности (СГ), подключенный к нагрузке; измерительный элемент с RС-четырехполюсником (ИЭЧ), представляющий собой при номи­нальном напряжении Ucr уравновешенный мост; корректирующий элемент гибкой обратной связи (ЭГОС); фазочувствительный усили­тель (ФЧУ), преобразующий сигнал разбаланса моста в соответствую­щий сдвиг фаз управляющего напряжения тиристоров тиристорного усилителя <ТУ). Электромашинный возбудитель СГ с обмоткой возбуждения служит исполнительным элементом регулятора.

Электронный регулятор напряжения является автоматической системой статического регулирования, т. е. при изменении нагрузки

на СГ для поддержания напряжения на номинальном уровне необ­ходимо устанавливать различные токи возбуждения.

Принцип работы, уравнения и статические характеристики эле­ментов ЭРН. Для получения требуемой характеристики компаунди­рования в ЭРН применяют трансформаторы тока и напряжения, ко­торые формируют напряжение на входе ИЭЧ. Отклонение напряже­ния СГ от номинала вызывает изменение U1 на выходе суммирующего трансформатора, т. е.

где kт — коэффициент трансформации; Ucг — напряжение синхрон­ного генератора.

Напряжение на выходе измерительного моста

где kим — передаточный коэффициент моста.

Сигнал uим(t) поступает на четырехполюсник, состоящий из ре­зистора R и емкости С. Дифференциальное уравнение четырехпо­люсника

где Uy(t) — напряжение, поступающее на вход ФЧУ; Тч = RC — постоянная времени четырехполюсника.

Напряжение на базе входного транзистора ФЧУ равно разности напряжений:

где uос(t) — сигнал обратной связи элемента гибкой ОС.

Напряжение на выходе ФЧУ (на входе тиристорного усилителя)

Из рассмотренных выше уравнений получим сле­дующие передаточные функции:

Передаточная функция ТУ регулятора

где uв(t) — напряжение на входе возбудителя; kту— коэффициент передачи ТУ.

С выхода оконечного каскада усилителя напряжение поступает на обмотку возбудителя, затем на якорь генератора постоянного тока и обмотку возбуждения синхронного генератора . Дифферен­циальное уравнение обмотки возбудителя и якоря генератора, питающего обмотку возбуждения СГ, имеет вид

где uвых(t) — напряжение на выходе электромашинного возбудителя; Тв — постоянная времени обмотки возбуждения генератора по­стоянного тока; Тг — постоянная времени обмотки возбуждения СГ; кв — передаточный коэффициент возбудителя.

Дифференциальное уравнение синхронного генератора

где kсг— передаточный коэффициент СГ; Тсг— постоянная времени. Экспериментальные статические характеристики электромашин­ного возбудителя и СГ приведены. Соответствующие коэффициенты передачи определяют по линеаризованным характе­ристикам. kв = tg; kсг = tg .

Дифференциальное уравнение корректирующего элемента — гибкой ОС

где kгос — коэффициент гибкой обратной связи; ic(t) — ток коррек­тирующего элемента.

В соответствии с уравнениями получим передаточные функции:

— объекта регулирования — синхронного генератора;

— элемента гибкой ОС (здесь Тос — постоянная времени).

Структурная схема ЭРН, составленная в соответствии с переда­точными функциями W1(s) —W7 (s) и уравнением сравнивающего элемента фазочувствительного транзисторного усилителя:

Передаточная функция системы с разомкнутой главной ОС

Используя выражение и выражения передаточных функ­ций элементов, получим Ф(s) — передаточную функцию электрон­ного регулятора напряжения как замкнутой САР:

если s0, то получим статический коэффициент ЭРН

Анализ устойчивости процесса регулирования напряжения СГ, а также анализ качества поддержания напряжения относительно но­минального значения можно выполнить в соответствии с данными выраже­ниями.

Величина статизма регулирования в системе может изменяться с помощью схемы токовой стабилизации, состоящей из резисторов, включенных в цепь трансформатора тока. Таким образом обеспечи­вается устойчивое распределение реактивной нагрузки между парал­лельно работающими генераторами.

Для синхронных генераторов, работающих на дальние линии электропередачи, закон регулирования усложняется за счет введе­ния воздействия по отклонению напряжения и его производных по времени, а также по току статора и его производным.

Проверим систему на устойчивость, по критерию устойчивости Ляпунова.

Читайте так же:
Где отрегулировать ксеноновые фары

Найдем полюса (корни характеристического уравнения) передаточной функции для замкнутой системы:

Полюс имеет отрицательную вещественную часть, следовательно, система устойчива.

Построим переходный процесс и определим прямые оценки качества системы.

1. Время переходного процесса системы – это время регулирования системы, определяется как интервал времени от момента приложения какого-либо воздействия на систему до времени вхождения системы в 5% трубку. tn = 7 51с

2. Перерегулирование (максимальная динамическая ошибка)

3. Колебательность – число колебаний системы от момента воздействия на нее до перехода в установившееся состояние. N=0

4. Время нарастания регулируемой величины – время, при котором выходная величина достигает своего максимального значения. tm=7.27с.

5. Время первого согласования – время, за которое регулируемая величина первый раз достигнет своего установившегося значения. t1 = 0.098c.

Построим АЧХ замкнутой системы и определим косвенные оценки качества системы.

Принцип работы синхронного генератора

Генератор (альтернатор) переменного тока предназначен для того, чтобы преобразовывать механическую энергию в электрическую. Его ротор вращается от первичного двигателя, в качестве которого может служить турбина, ДВС, электродвигатель.

Генератор

Как выглядит синхронный генератор

К синхронным машинам относятся те, у которых ротор имеет одинаковую частоту вращения с магнитным полем:

f – частота сети;

p – количество пар полюсов статора.

Принцип работы

Статор и ротор – главные составные части синхронного генератора (СГ).

Статор

Принцип действия синхронного генератора

Как изображено на рисунке, синхронный генератор чаще всего вырабатывает энергию, когда ротор вращается вместе с магнитным полем, линии которого пересекают статорную обмотку, расположенную неподвижно. Поле создаётся от дополнительного возбудителя (дополнительного генератора, аккумулятора и др. источников).

Процесс может происходить наоборот – вращающийся проводник находится в неподвижном магнитном поле. Здесь появляется проблема токосъёма через коллекторный узел. Для генераторов переменного тока небольшой мощности эта схема вполне подходит. Обычно она применяется в передвижных установках.

В СГ вырабатывается ЭДС:

B – магнитная индукция;

l – длина паза статора;

w – количество витков в статорной обмотке;

D – внутренний диаметр статора.

Основная электроэнергетика построена на напряжении 15-40 кВ. Передача энергии через коллектор СГ затруднительна. К тому же подвижная обмотка подвержена ударным нагрузкам и вращению с переменной скоростью, что создаёт проблемы с изоляцией. Из-за этого, обмотки якоря делают неподвижными, поскольку через них проходит основная энергия. Мощность возбудителя не превышает 5% от общей мощности СГ. Это позволяет проводить ток через подвижный узел.

В машинах переменного тока небольшой мощности (несколько киловатт) ротор изготавливают с постоянными магнитами (неодимовыми и др.). Здесь не требуется установка подвижных контактов, но тогда возникают сложности с регулированием напряжения на выходе.

Устройство генератора

Статор имеет общий принцип действия с асинхронником и мало отличается от него. Его железо собирается из пластин электротехнической стали, разделённых изолирующими слоями. В пазах размещается обмотка переменного тока. Наиболее распространён трёхфазный синхронный генератор. Провода обмоток надёжно крепятся и изолируются, поскольку через них подключается нагрузка.

Ротор выполняется с явно выраженными полюсами или без выступающих полюсов.

Полюс

Виды полюсов синхронного генератора: а) – выступающие; б – неявно выраженные

Первые делаются для тихоходных машин, например, с гидравлическими турбинами. Для вращающихся с большой скоростью генераторов переменного тока принцип действия заключается в применении более прочных неявно выраженных полюсов.

СГ может работать в режимах двигателя или генератора переменного тока. Важно, какой здесь применяется способ охлаждения. Обычно на валу устанавливаются крыльчатки, охлаждающие ротор с обеих сторон. Воздух перед вентиляцией проходит через фильтр. В замкнутой системе циркулирует один и тот же воздух, проходя через теплообменники.

Более эффективным охлаждающим агентом является водород, в 14,5 раз более лёгкий, чем воздух. Принцип охлаждения у него аналогичный.

Обмотки генератора переменного тока выводятся концами на его распределительную коробку. Для трёхфазных – соединение производится в звезду или в треугольник.

Читайте так же:
Как отрегулировать давление воздуха в гидроаккумуляторе насосной станции

Синхронный генератор преимущественно обеспечивает поддерживание синусоидального переменного напряжения. Это достигается изменением формы полюсных наконечников, а неявнополюсный ротор имеет определённое расположение витков в его пазах.

Реакция якоря

При соединении выхода с внешней нагрузкой в обмотках статора протекает электрический ток. Образующееся магнитное поле накладывается на поле, которое создаёт ротор.

Якорь

Реакция якоря при разных видах нагрузки

При активной нагрузке ток и ЭДС совпадают по фазам (изображено на рисунке выше – а). Он становится максимальным, если полюса ротора располагаются напротив якорных обмоток. Основной магнитный поток и образующийся от реакции якоря перпендикулярны и при наложении образуют несколько больший результирующий поток, увеличивающий ЭДС.

Индуктивная нагрузка приводит к снижению ЭДС, поскольку потоки направлены встречно (изображено на рисунке выше – б).

Ёмкостная нагрузка вызывает совпадение направлений потоков, в результате чего ЭДС увеличивается.

Увеличение нагрузки приводит к большей реакции якоря, приводящей к изменению выходного напряжения, что нежелательно. На практике этот процесс управляется изменением возбуждения, что снижает степень воздействия реакции якоря на основное поле.

Режимы работы СГ

Нормальные режимы работы характеризуются сколько угодно длительными периодами времени. В их число входят отклонения коэффициентов мощности, выходного напряжения до 5% и частоты до 2,5% от номиналов и т. п. Допуски на отклонения определяются нагревом агрегатов и задаются стандартами или гарантируются производителями.

А нормальные режимы функционирования неприемлемы для продолжительной работы и связаны с появлением перегрузок, с недовозбуждением, переходами в асинхронные режимы. Этот режим работы связан с отклонениями в сети: короткими замыканиями, нагрузками переменного действия, неравномерностью загрузки фаз.

На нормально работающее устройство оказывает влияние подключённая сеть, где нарушения функционирования отдельных потребителей вызывают несимметрию и искажения формы сигнала. Из-за этого могут перегреваться обмотки или конструкция генератора.

Продолжительная работа генератора возможна при различии фазных токов на турбогенераторах до 10% и до 20% на синхронных компенсаторах и гидрогенераторах.

Искажение синусоиды на СГ происходит из-за мощных выпрямителей, преобразователей, электротранспорта и т. д.

Важно для синхронных машин, чтобы нормально работала система охлаждения. Если затраты охлаждающей воды достигают 70% от номинала, срабатывает сигнализация предупреждения. Если расход охладителя снижается наполовину, устройство должно разгружаться за 2 мин, а затем отключаться не более чем за 4 мин.

Характеристики генератора:

  1. при холостом ходе, когда обмотка якоря не замкнута, устанавливается зависимость ЭДС от токов возбуждения, а также определяется показатель намагничивания сердечников машины;
  2. внешняя характеристика – зависимость выходного напряжения от нагрузочных токов;
  3. регулировочные характеристики, проявляющиеся в зависимости токов возбуждения от нагрузочных при автоматическом поддерживании заданных выходных параметров.

Виды генераторов

Генераторы отличаются способами возбуждения. В автономных установках на транспорте, в авиации, на судах применяется самовозбуждение за счёт остаточного намагничивания. Способ отличается надёжностью и удобством применения. Распространённым вариантом здесь является отбор энергии от статорной обмотки, которая проходит через понижающий трансформатор и полупроводниковый преобразователь ПП, в результате чего на обмотку возбуждения через коллектор поступает постоянный ток (изображено на рисунке ниже – а).

Схема

Принцип самовозбуждения синхронного генератора

Другая схема реализует самовозбуждение также путём подачи переменного тока со статорной обмотки через выпрямительный трансформатор ВТ и тиристор ТП в обмотку возбуждения ОВ (изображено на рисунке выше – б). Тиристором автоматически управляет регулятор возбуждения АРВ по сигналам от входа генератора СГ через трансформаторы напряжения ТН и тока ТТ. Блок защиты БЗ не допускает образования на обмотке возбуждения повышенного напряжения и перегрузочного тока.

Другая конструкция содержит дополнительную синхронную или асинхронную машину с возбуждением от статорных обмоток. На рисунке ниже изображена такая система СГ с обмоткой возбуждения ОВ и трёхфазной обмоткой статора. При этом ротор основного генератора имеет общий вал с якорными обмотками возбуждения ОВ1 и ОВ2 дополнительного подвозбудителя ПВ. Ток возбуждения регулируется реостатами r1 и r2. Устройство не уступает по быстродействию установкам с самовозбуждением, но конструкция у него более сложная, а габариты больше.

Читайте так же:
Двигатель j08c регулировка клапанов

Схема

Система возбуждения с дополнительным генератором

Применяется также бесконтактная система возбуждения, где у СГ нет подвижных контактов для передачи энергии. Щётки с коллектором имеют только подвозбудитель ПВ, который питает пост

Схема

Бесконтактная система возбуждения синхронного генератора

оянным током обмотку I возбудителя В.

Видео. Синхронные машины

Можно отметить следующие современные направления в развитии технологии производства синхронных машин:

Есть у нас специалисты по бензогенераторам?

для любителей пачитать
Генераторы с компаундным возбуждением к компенсирующей емкостью
Наиболее простым по технической реализации является бесщеточный генератор с компаундным возбуждением и компенсирующей емкостью, подключенной к дополнительной обмотке. Такой генератор представляет собой явнополюсную синхронную машину с обмоткой возбуждения в роторе.

Обмотка возбуждения разбита на две секции, концы каждой из которых замкнуты через диод. Таким образом, индуцированный ток в обмотке возбуждения может протекать только в одном направлении, создавая постоянное магнитное поле.

Статор имеет две обмотки: основную и дополнительную. К основной обмотке подключается нагрузка. К дополнительной обмотке подключается компенсирующий конденсатор. Основная обмотка занимает 2/3 пазов статора, а дополнительная 1/3 пазов.

Работает генератор следующим образом. При начале вращения ротора тока в обмотках нет. Однако магнитопроводы статора и ротора имеют остаточную намагниченность. За счет последней в обмотках начинает индуцироваться ток. Так как за счет диодов ток в обмотке ротора может протекать только в одном направлении, магнитопровод ротора начинает намагничиваться. При этом вращающееся магнитное поле создаваемое ротором индуцирует в обмотках статора электродвижущую силу. Поскольку дополнительная обмотка статора нагружена на конденсатор, через нее начинает протекать переменный ток. Этот переменный ток создает переменное, но не вращающееся магнитное поле статора, которое индуцирует электродвижущую силу в обмотке ротора. Под действием этой электродвижущей силы в обмотке ротора возникает ток, который выпрямляется диодами и еще сильнее намагничивает ротор. Это в свою очередь вызывает увеличение электродвижущей силы и тока в обмотках статора, что в свою очередь еще сильнее намагничивает ротор. Процесс возбуждения развивается лавинообразно до входа магнитопроводов статора и ротора в режим насыщения. В основной обмотке статора возникает электродвижущая сила номинальной величины. Генератор готов к подключению нагрузки.

При подключении нагрузки к основной обмотке в ней появляется ток, который создает свое магнитное поле. Если бы возбуждение генератора осталось на прежнем уровне, то напряжение на его выходных зажимах снизилось бы по двум причинам: падения напряжения на внутреннем сопротивлении и смещения магнитного поля относительно оси обмотки статора. Однако обмотки статора расположены таким образом, что их магнитные оси повернуты на 90 градусов. За счет этого происходит поворот магнитного поля ротора в направлении основной обмотки, что увеличивает ЭДС индукции в ней. Чем больше ток основной обмотки — тем больше поворот магнитного поля ротора. Таким образом происходит стабилизация выходного напряжения генератора. Такой способ регулирования называется компаундным.

Генератор с компаундным возбуждением прост по конструкции, обладает малым весом и стоимостью, что обусловило его широкое применение в переносных бензиноэлектрических агрегатах («бензиновые электростанции»). В то же время этому типу генераторов присущ ряд недостатков, а именно:

генератор может быть только однофазным;
в случае подключения к генератору нагрузки с нелинейным характером сопротивления (например, нагреватель, включенный через диод) процесс компаундирования нарушается — напряжение на выходе генератора может оказаться сильно завышенным.
к.п.д. генератора относительно невысок, так как существенная часть энергии переменного магнитного поля теряется на перемагничивание магнитопроводов, работающих в режиме близком к насыщению

Читайте так же:
Логан регулировка паузы дворников

Электропитающие устройства и линии автоматики, телемеханики и связи — Синхронные генераторы

Синхронные машины используют прежде всего в качестве генераторов. Их устанавливают на электрических станциях для преобразования механической энергии в электрическую.


Рис 194. Схемы включении трехфазных асинхронных двигателей и одно фазную сеть

Рис. 195. Рабочие характеристики асинхронного двигатели
Синхронный генератор состоит из неподвижного статора 2 (рис. 196, а), на котором размещаются три обмотки (А X, В Υ, С Ζ), и вращающегося ротора 1 с полюсами, на которых находится обмотка возбуждения ОВ. Постоянный гок, поступающий в обмотку возбуждения, намагничивает ротор, а первичный двигатель вращает его с частотой п. При этом обмотки статора пересекаются магнитным полем и в них индуцируются переменные э. д. с., сдвинутые по фазе на угол 120 . Источником постоянного гока возбуждения /„ является возбудитель небольшой генератор постоянного тока, мощность которого составляет 2 3% мощности грехфазного генератора. Якорь генератора постоянного тока соединен с валом синхронного генератора и приводится во вращение общим первичным двигателем.
При работе первичного двигателя (рис. 196, б) вращается вал ротора 1 и якорь 2. Ток возбуждения Iв проходит от положительного полюса возбудителя через щетку Щ1 и кольцо 3, обмотку возбуждения синхронного генератора 6, кольцо 4, щетку Щ2 к отрицательному полюсу возбудителя.
В некоторых синхронных генераторах для создания магнитного потока используется самовозбуждение. В таких генераторах цепь возбуждения подключают к обмоткам статора 7 через специальный выпрямитель. При вращении ротора 5 в обмотках статора 7 возникает небольшой переменный ток за счет остаточной индукции. Этот ток выпрямляется и, поступая в обмотку возбуждения, усиливает магнитный поток ротора, а следовательно, и э. д. с. генератора. Ротор можно вращать паровой или водяной турбиной или двигателем внутреннего сгорания. В соответствии с этим синхронный генератор называется турбогенератором, гидрогенератором или дизель-генератором.
Частота f вырабатываемого тока прямо пропорциональна частоте вращения первичного двигателя п и числу пар полюсов ротора: f= рп/60. Поэтому тихоходные генераторы, работающие совместно с водяными турбинами, имеют большое число явно выраженных полюсов. Генераторы с неявно выраженными полюсами работают совместно с паровыми турбинами и являются быстроходными.
В каждой обмотке статора наводится э. д. с.

где w — число витков обмотки;
Ф — магнитный поток ротора;
К — постоянный коэффициент обмотки.
Э. д. с. и напряжение генератора регулируют реостатом в цепи обмотки возбуждения генератора постоянного тока. Если увеличить ток возбуждения этого генератора, то увеличатся его напряжение и ток возбуждения Iв синхронного генератора, в результате чего возрастет магнитный поток Ф ротора и индуцируемая э. д. с. Е. К. п. д. синхронных генераторов большой мощности достигает 96—97%.

Рис. 196. Синхронный генератор (а) и его вращающаяся часть (б)

дизель-генератор

Рис. 197. Трехфазный синхронный генератор (дизель-генератор) :
1 — корпус статора; 2 — сердечник статора; 3 — пазы сердечника статора; 4 — трехфазная обмотка статора; 5 — полюс ротора; 6 — катушка обмотки возбуждения; 7 — генератор постоянного тока

Синхронные генераторы применяют для резервного питания устройств железнодорожной автоматики и телемеханики. Они входят η комплект дизель-генераторных агрегатов (ДГА) (рис. 197), которые используют при неисправности питающих трансформаторных подстанций. При соединении обмоток статора звездой линейное напряжение таких генераторов 380 В, мощность— 12, 24 или 48 кВ-А.

Рис. 198. Схема синхронного генератора с автоматической регулировкой напряжения
Дизель-генераторы снабжены аппаратурой системы самовозбуждения и автоматического регулирования напряжения (рис. 198). Последовательно с нагрузкой включены первичные обмотки трансформатора Т1, а параллельно нагрузке—первичные обмотки трансформатора Т2. Вторичные обмотки этих трансформаторов соединены параллельно и питают выпрямитель В, к которому подключена обмотка возбуждения ОB синхронного генератора. Вторичный ток Ii последовательного трансформатора зависит от тока нагрузки I, вторичный ток Iи параллельного трансформатора — от напряжения нагрузки U. Ток на входе выпрямителя I равен геометрической сумме токов/
Ток возбуждения Iв зависит не только от тока I и напряжения U нагрузки, но и от угла сдвига φ между ними.
Поэтому такую схему называют схемой фазового компаундирования.
Коэффициенты трансформации трансформаторов T1, Т2 и индуктивности L включенных катушек выбирают так, чтобы при любом токе I

Читайте так же:
Регулировка ручника фиат альбеа 2007 года

и угле φ сохранялось постоянным напряжение генератора U. С возрастанием активной или активно-индуктивной нагрузки увеличиваются токи и э. д. с. Е. В результате автоматически компенсируется действие возрастающего падения напряжения на обмотках статора. Самовозбуждение синхронных генераторов происходит так же, как и в генераторах постоянного тока, за счет остаточного магнетизма. Однако вследствие повышенного сопротивления выпрямителя при малых напряжениях з. д. с. от остаточного магнетизма недостаточна для самовозбуждения. Поэтому принимают ряд мер, улучшающих процесс самовозбуждения. Для этого параллельно выпрямителю В со стороны переменного тока включают резонансный контур, состоящий из конденсаторов. Емкость конденсаторов С выбирают такой, чтобы во время пуска, когда частота вращения ротора п < n1, наступил резонанс напряжений, при котором напряжение на конденсаторах и на входе выпрямителя повысилось. Благодаря этому снижается сопротивление выпрямителя, происходит самовозбуждение. При установившейся частоте вращения ротора п =np условие резонанса нарушается и конденсаторы практически не влияют на работу схемы.

Характеристики.

К основным характеристикам синхронного генератора относятся регулировочные, внешние и характеристики холостого хода. Характеристики снимают с помощью схемы, представленной на рис. 199.
Характеристика холостого хода (рис. 200, а) показывает зависимость э. д. с. Е обмотки статора от тока возбуждения Iв при постоянной частоте вращения п и выключенной нагрузке, т. е. Е=f(Iв) при п —- const; I— const; I — 0.
Ток возбуждения синхронного генератора регулируется реостатом R (см. рис. 199), который включен последовательно с обмоткой возбуждения ОВ. Для измерения тока, напряжения и частоты на выходе генератора включены амперметры (РА1 — РАЗ), вольтметр PV и частотомер Hz. Характеристика холостого хода синхронного генератора подобна кривой намагничивания сердечника ротора.
Внешние характеристики (рис. 200, б) отображают зависимость напряжения генератора U от тока нагрузки / при неизменных токе возбуждения, частоте вращения и коэффициенте мощности, т. е. U =f(I) при Iв — const; п — const и cos φ — const.

Рис. 199. Схема синхронного генератора


Рис. 200. Характеристики синхронного генератора
Если увеличивать нагрузку с преобладанием индуктивности на генераторе, то его напряжение резко снижается (кривая 1). Это объясняется увеличением падения напряжения на обмотках статора и реакцией статора. Реакцией статора называется взаимодействие вращающегося магнитного потока статора с магнитным потоком ротора, которые вращаются с одинаковой скоростью (синхронно). С увеличением нагрузки возрастает магнитный поток обмоток статора, направленный противоположно магнитному потоку ротора. В результате размагничивания ротора снижается э. д. с. и напряжение генератора. Если к генератору подключить только активную нагрузку, то магнитный поток статора будет сдвинут относительно ротора на угол 90°. Размагничивающее действие реакции статора несколько снижается и напряжение генератора изменяется по кривой 2. При нагрузке с преобладанием емкости магнитный поток статора направлен в одну сторону с магнитным потоком ротора. Поэтому напряжение генератора изменяется по кривой 3.
Регулировочные характеристики (рис. 200, в) при активно-индуктивной нагрузке 1, активной нагрузке 2, активно-емкостной нагрузке 3 показывают зависимость тока возбуждения генератора Iв от тока нагрузки при постоянном напряжении, частоте вращения и коэффициенте мощности. Регулировочные характеристики показывают, как следует изменять ток возбуждения генератора при увеличении тока нагрузки для того, чтобы напряжение генератора U было постоянным.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector